
83 Page  
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B.Tech  (CSE)– III-II Sem        L    T   P   C 

                      3     0   0     3 

(19A05602T) BIG DATA ANALYTICS 

(Common to CSE & IT) 

 
The course is designed to  

 Understand the basic concepts and importance of Big Data 

 Familiarize with the installation of  Hadoop and how to analyze the Big Data 

 Understand the design concepts of HDFS 

 Provide good insight for developing a MapReduce applications 

 Understand Hadoop environment. 

 Explore the concepts of Pig, Hive, Spark and HBase 

 

UNIT-I 

Introduction to Big Data:What is Big Data? Why Big Data is Important? Meet Hadoop, Data, 

Data Storage and Analysis, Comparison with other systems, History of Apache Hadoop, Hadoop 

Ecosystem, VMWare Installation of Hadoop. Analyzing the Data with Hadoop, Scaling Out. 

 

Learning Outcomes: 

At the end of the unit, students will be able to: 

 Identify the characteristics of datasets. (L3) 

 Compare trivial data and big data for various applications. (L4) 

 Choose and implement various ways of selecting suitable model parameters.(L1) 

 

UNIT- II 

HDFS: The Design of HDFS, HDFS Concepts, The Command-Line Interface, Hadoop File 

systems, The Java Interface, Data flow. 

MapReduce: Developing a MapReduce application, The Configuration API, Setting up the 

Development Environment, Running Locally on Test Data, Running on a Cluster 

 

Learning Outcomes: 

At the end of the unit, students will be able to: 

● Understand and apply scaling up Hadoop techniques and associated technologies.(L2) 

● Estimate suitable test data. (L5) 

● Apply the MapReduce application on a cluster.(L3) 
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UNIT-III 

How MapReduce Works: Anatomy of a MapReduce, Job Run, Failures, Shuffle and Sort, Task 

Execution.  

MapReduce Types and Formats:MapReduce Types, Input formats, output formats. 

 

Learning Outcomes: 

At the end of the unit, students will be able to: 

● Explore the Anatomy of MapReduce. (L5) 

● Illustrate various input and output formats of MapReduce. (L2) 

● List various MapReduce types.(L1) 

 

UNIT-IV 

Hadoop Environment: Setting up a Hadoop Cluster, Cluster specification, Cluster Setup and 

Installation, Hadoop Configuration, Security. 

Pig: Installing and Running Pig, an Example, Comparison with Databases, Pig Latin, User-

Defined Functions, Data Processing Operators. 

 

Learning Outcomes: 

At the end of the unit, students will be able to: 

● Show the cluster setup and installation.(L2) 

● Demonstrate the Configure the Hadoop.(L2) 

● Compare Hadoop with various Databases.(L5) 

 

UNIT-V 

Hive: Installing Hive, Running Hive, Comparison with traditional Databases, HiveQL, Tables, 

Querying Data. 

Spark: Installing Spark, Resilient Distributed Datasets, Shared Variables, Anatomy of a Spark 

Job Run. 

HBase: HBasics, Installation, clients, Building an Online Query Application. 

 

Learning Outcomes: 

At the end of the unit, students will be able to: 

● Explain various frameworks of Big Data. (L2) 

● Compare Hive with traditional Databases.(L4) 

● Learn how to build an online query application.(L1) 

 

  



85 Page  
 

Course Outcomes: 

Upon completion of the course, the students should be able to: 

 Explain the concepts and challenges of big data (L2) 

 Determine why existing technologies are inadequate to analyze the large data. (L5) 

 Outline the operations viz. Collect, manage, store, query, and analyze various forms of 

big data. (L2) 

 Apply large-scale analytic tools to solve some of the open big data problems. (L3) 

 Analyze the impact of big data for business decisions and strategies.(L4) 

 Design different big data applications. (L6) 

 

Text Books: 

 

1. Tom White, “Hadoop: The Definitive Guide”Fourth Edition, O’reilly Media, 2015. 

2. Big Data, Big Analytics: Emerging business intelligence and analytic trends for today’s 

businesses, Michael Minnelli, Michelle Chambers, and Ambiga Dhiraj, Wiley Cio Series 

 

Reference Books: 

 

1. Glenn J. Myatt, Making Sense of Data , John Wiley & Sons, 2007 Pete Warden,Big Data  

Glossary, O’Reilly, 2011. 

2. Michael Berthold, David J.Hand, Intelligent Data Analysis, Spingers, 2007. 

3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos,Uderstanding Big  

Data : Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill Publishing, 

2012. 

4. Anand Rajaraman and Jeffrey David UIIman, Mining of Massive Datasets Cambridge 

University Press, 2012. 
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UNIT-1 
 

SYLLABUS: 

1. Distributed programming using JAVA: Quick Recap 
2. advanced Java Programming: Generics,  
3. Threads,  
4. Sockets,  
5. Simple client server Programming using JAVA,  
6. Difficulties in developing distributed programs for large scale clusters and  
7. introduction to cloud computing. 

 
 

1. DISTRIBUTED PROGRAMMING USING JAVA: QUICK RECAP 
 

Anatomy of a Distributed Application 

A distributed application is built upon several layers. At the lowest level, a network connects a group of 
host computers together so that they can talk to each other. Network protocols like TCP/IP let the 
computers send data to each other over the network by providing the ability to package and address 
data for delivery to another machine. Higher-level services can be defined on top of the network 
protocol, such as directory services and security protocols. Finally, the distributed application itself 
runs on top of these layers, using the mid-level services and network protocols as well as the computer 
operating systems to perform coordinated tasks across the network.  

At the application level, a distributed application can be broken down into the following parts:  

Processes  

A process is created by describing a sequence of steps in a programming language, compiling the 
program into an executable form, and running the executable in the operating system.  

Threads  

Every process has at least one thread of control. Some operating systems support the creation of 
multiple threads of control within a single process. Each thread in a process can run independently 
from the other threads, although there is usually some synchronization between them.  

Objects  

An object is a group of related data, with methods available for querying or altering the data 
(getName(), set-Name()), or for taking some action based on the data (sendName(Out-putStreamo)). 
Objects can be accessed by one or more threads within the process. And with the introduction of 
distributed object technology like RMI and CORBA, an object can also be logically spread across 
multiple processes, on multiple computers.  

 
 
Agents  

The term "agent" as a general way to refer to significant functional elements of a distributed 
application. an agent is a higher-level system component, defined around a particular function, or 
utility, or role in the overall system.  

G B Gangadhar
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Example: A remote banking application, for example, might be broken down into a customer agent, 
a transaction agent and an information brokerage agent. Agents can be distributed across multiple 
processes, and can be made up of multiple objects and threads in these processes. Our customer 
agent might be made up of an object in a process running on a client desktop that's listening for 
data and updating the local display, along with an object in a process running on the bank server, 
issuing queries and sending the data back to the client.  

Developing distributed object-based applications can be done in Java using RMI or JavaIDL (an 
implementation of CORBA). 

The Client/Server Model 

The client/server model is a form of distributed computing in which one program (the client) 
communicates with another program (the server) for the purpose of exchanging information. In this 
model, both the client and server usually speak the same language -- a protocol that both the client and 
server understand -- so they are able to communicate. 

While the client/server model can be implemented in various ways, it is typically done using low-level 
sockets. Using sockets to develop client/server systems means that we must design a protocol, which is a 
set of commands agreed upon by the client and server through which they will be able to communicate.  

The Distributed Objects Model 

A distributed object-based system is a collection of objects that isolates the requesters of services (clients) 
from the providers of services (servers) by a well-defined encapsulating interface. In other words, clients 
are isolated from the implementation of services as data representations and executable code. This is one 
of the main differences that distinguishes the distributed object-based model from the pure client/server 
model. 

In the distributed object-based model, a client sends a message to an object, which in turns interprets the 
message to decide what service to perform. This service, or method, selection could be performed by either 
the object or a broker. The Java Remote Method Invocation (RMI) and the Common Object Request Broker 
Architecture (CORBA) are examples of this model. 

RMI 

RMI is a distributed object system that enables you to easily develop distributed Java applications. 
Developing distributed applications in RMI is simpler than developing with sockets since there is no need 
to design a protocol, which is an error-prone task. In RMI, the developer has the illusion of calling a local 
method from a local class file, when in fact the arguments are shipped to the remote target and interpreted, 
and the results are sent back to the callers. 

The Genesis of an RMI Application 

Developing a distributed application using RMI involves the following steps: 

1. Define a remote interface 
2. Implement the remote interface 
3. Develop the server 
4. Develop a client 
5. Generate Stubs and Skeletons, start the RMI registry, server, and client 
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CORBA 

The Common Object Request Broker Architecture (or CORBA) is an industry standard developed by the 
Object Management Group (OMG) to aid in distributed objects programming. It is important to note that 
CORBA is simply a specification. A CORBA implementation is known as an ORB (or Object Request Broker). 
There are several CORBA implementations available on the market such as VisiBroker, ORBIX, and others. 
JavaIDL is another implementation that comes as a core package with the JDK1.3 or above. 

CORBA was designed to be platform and language independent. Therefore, CORBA objects can run on any 
platform, located anywhere on the network, and can be written in any language that has Interface 
Definition Language (IDL) mappings. 

Similar to RMI, CORBA objects are specified with interfaces. Interfaces in CORBA, however, are specified in 
IDL. While IDL is similar to C++, it is important to note that IDL is not a programming language. 

The Genesis of a CORBA Application 

There are a number of steps involved in developing CORBA applications. These are: 

1. Define an interface in IDL 
2. Map the IDL interface to Java (done automatically) 
3. Implement the interface 
4. Develop the server 
5. Develop a client 
6. Run the naming service, the server, and the client. 

CORBA vs. RMI 

Code-wise, it is clear that RMI is simpler to work with since the Java developer does not need to be familiar 
with the Interface Definition Language (IDL). In general, however, CORBA differs from RMI in the following 
areas: 

 CORBA interfaces are defined in IDL and RMI interfaces are defined in Java. RMI-IIOP allows you to 
write all interfaces in Java. 

 CORBA supports in and out parameters, while RMI does not since local objects are passed by copy 
and remote objects are passed by reference. 

 CORBA was designed with language independence in mind. This means that some of the objects can 
be written in Java, for example, and other objects can be written in C++ and yet they all can 
interoperate. Therefore, CORBA is an ideal mechanism for bridging islands between different 
programming languages. On the other hand, RMI was designed for a single language where all 
objects are written in Java. Note however, with RMI-IIOP it is possible to achieve interoperability. 

 CORBA objects are not garbage collected. As we mentioned, CORBA is language independent and 
some languages (C++ for example) does not support garbage collection. RMI objects are garbage 
collected automatically. 

 

2. ADVANCED JAVA PROGRAMMING: GENERICS 
 

The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects. 

Before generics, we can store any type of objects in collection i.e. non-generic. Now generics, forces the 
java programmer to store specific type of objects. 
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• Collections can store Objects of any Type 

• Generics restricts  the Objects to be put in a collection  

• Generics ease identification of runtime errors at compile time 

Advantage of Java Generics 

There are mainly 3 advantages of generics. They are as follows: 

1) Type-safety : We can hold only a single type of objects in generics. It doesn’t allow to store other 
objects. 

2) Type casting is not required: There is no need to typecast the object. 

Before Generics, we need to type cast. 

1. List list = new ArrayList();   
2. list.add("hello");   
3. String s = (String) list.get(0);//typecasting   

After Generics, we don't need to typecast the object. 

1. List<String> list = new ArrayList<String>();   
2. list.add("hello");   
3. String s = list.get(0);   

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime. The good 
programming strategy says it is far better to handle the problem at compile time than runtime. 

1. List<String> list = new ArrayList<String>();   
2. list.add("hello");   
3. list.add(32);//Compile Time Error   

Syntax to use generic collection 

1. ClassOrInterface<Type>   

Example to use Generics in java 

1. ArrayList<String>   

Example of Generics in Java 

Here, we are using the ArrayList class, but you can use any collection class such as ArrayList, 
LinkedList, HashSet, TreeSet, HashMap, Comparator etc.  

1. import java.util.*;   
2. class TestGenerics1{   
3. public static void main(String args[]){   
4. ArrayList<String> list=new ArrayList<String>();   
5. list.add("rahul");   
6. list.add("jai");   
7. //list.add(32);//compile time error   
8.    
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9. String s=list.get(1);//type casting is not required   
10. System.out.println("element is: "+s);   
11.    
12. Iterator<String> itr=list.iterator();   
13. while(itr.hasNext()){   
14. System.out.println(itr.next());   
15. }   
16. }   
17. }   

Output:element is: jai 
       rahul 
       jai  

Generic class 

A class that can refer to any type is known as generic class. Here, we are using T type parameter 
to create the generic class of specific type. 

Let’s see the simple example to create and use the generic class. 

Creating generic class:  

1. class MyGen<T>{   
2. T obj;   
3. void add(T obj){this.obj=obj;}   
4. T get(){return obj;}   
5. }   

The T type indicates that it can refer to any type (like String, Integer, Employee etc.). The type you 
specify for the class, will be used to store and retrieve the data. 

Using generic class:  

Let’s see the code to use the generic class. 

1. class TestGenerics3{   
2. public static void main(String args[]){   
3. MyGen<Integer> m=new MyGen<Integer>();   
4. m.add(2);   
5. //m.add("vivek");//Compile time error   
6. System.out.println(m.get());   
7. }}   

Output:2 

Type Parameters 

The type parameters naming conventions are important to learn generics thoroughly. The 
commonly type parameters are as follows: 

1. T - Type 
2. E - Element  
3. K - Key 
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4. N - Number 
5. V - Value 

Generic Method 

Like generic class, we can create generic method that can accept any type of argument. 

Let’s see a simple example of java generic method to print array elements. We are using here E to 
denote the element. 

1. public class TestGenerics4{   
2.    
3.    public static < E > void printArray(E[] elements) {   
4.         for ( E element : elements){           
5.             System.out.println(element );   
6.          }   
7.          System.out.println();   
8.     }   
9.     public static void main( String args[] ) {   
10.         Integer[] intArray = { 10, 20, 30, 40, 50 };   
11.         Character[] charArray = { 'J', 'A', 'V', 'A', 'T','P','O','I','N','T' };   
12.    
13.         System.out.println( "Printing Integer Array" );   
14.         printArray( intArray  );    
15.    
16.        System.out.println( "Printing Character Array" );   
17.         printArray( charArray );    
18.     }    
19. }   

Output:Printing Integer Array 
        10 
        20 
        30 
        40 
        50 
        Printing Character Array 
        J 
        A 
        V 
        A 
        T 
        P 
        O 
        I 
        N 
        T 

Java Generics Wildcards 

Question mark (?) is the wildcard in generics and represent an unknown type. The wildcard can be used as 
the type of a parameter, field, or local variable and sometimes as a return type. We can’t use wildcards 
while invoking a generic method or instantiating a generic class. In following sections, we will learn about 
upper bounded wildcards, lower bounded wildcards, and wildcard capture. 
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Java Generics Upper Bounded Wildcard 

Upper bounded wildcards are used to relax the restriction on the type of variable in a method. Suppose we 
want to write a method that will return the sum of numbers in the list, so our implementation will be 
something like this. 

public static double sum(List<Number> list){ 
  double sum = 0; 
  for(Number n : list){ 
   sum += n.doubleValue(); 
  } 
  return sum; 
 } 

Now the problem with above implementation is that it won’t work with List of Integers or Doubles because 
we know that List<Integer> and List<Double> are not related, this is when upper bounded wildcard is 
helpful. We use generics wildcard with extends keyword and the upper bound class or interface that will 
allow us to pass argument of upper bound or it’s subclasses types. 

The above implementation can be modified like below program. 

package com.journaldev.generics; 
import java.util.ArrayList; 
import java.util.List; 
public class GenericsWildcards { 
 
 public static void main(String[] args) { 
  List<Integer> ints = new ArrayList<>(); 
  ints.add(3); ints.add(5); ints.add(10); 
  double sum = sum(ints); 
  System.out.println("Sum of ints="+sum); 
 } 
 
 public static double sum(List<? extends Number> list){ 
  double sum = 0; 
  for(Number n : list){ 
   sum += n.doubleValue(); 
  } 
  return sum; 
 } 
} 

It’s similar like writing our code in terms of interface, in above method we can use all the methods of upper 
bound class Number. Note that with upper bounded list, we are not allowed to add any object to the list 
except null. If we will try to add an element to the list inside the sum method, the program won’t compile. 

Java Generics Unbounded Wildcard 

Sometimes we have a situation where we want our generic method to be working with all types, in this 
case unbounded wildcard can be used. Its same as using <? extends Object>. 

public static void printData(List<?> list){ 
  for(Object obj : list){ 
   System.out.print(obj + "::"); 
  } 
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 } 

We can provide List<String> or List<Integer> or any other type of Object list argument to the printData 
method. Similar to upper bound list, we are not allowed to add anything to the list. 

Java Generics Lower bounded Wildcard 

Suppose we want to add Integers to a list of integers in a method, we can keep the argument type as 
List<Integer> but it will be tied up with Integers whereas List<Number> and List<Object> can also hold 
integers, so we can use lower bound wildcard to achieve this. We use generics wildcard (?) with super 
keyword and lower bound class to achieve this. 

We can pass lower bound or any super type of lower bound as an argument in this case, java compiler 
allows to add lower bound object types to the list. 

public static void addIntegers(List<? super Integer> list){ 
  list.add(new Integer(50)); 
 } 

Subtyping using Generics Wildcard 

List<? extends Integer> intList = new ArrayList<>(); 
List<? extends Number>  numList = intList;  // OK. List<? extends Integer> is a subtype of List<? extends 
Number> 

Java Generics Type Erasure 

Generics in Java was added to provide type-checking at compile time and it has no use at run time, so java 
compiler uses type erasure feature to remove all the generics type checking code in byte code and insert 
type-casting if necessary. Type erasure ensures that no new classes are created for parameterized types; 
consequently, generics incur no runtime overhead. 

For example if we have a generic class like below; 

public class Test<T extends Comparable<T>> { 
 
    private T data; 
    private Test<T> next; 
 
    public Test(T d, Test<T> n) { 
        this.data = d; 
        this.next = n; 
    } 
 
    public T getData() { return this.data; } 
} 

The Java compiler replaces the bounded type parameter T with the first bound interface, Comparable, as 
below code: 

public class Test { 
 
    private Comparable data; 
    private Test next; 
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    public Node(Comparable d, Test n) { 
        this.data = d; 
        this.next = n; 
    } 
 
    public Comparable getData() { return data; } 
} 
 

3. THREADS 

Multitasking refers to a computer's ability to perform multiple jobs concurrently more than one program 

are running concurrently, e.g., UNIX 

A thread is a single sequence of execution within a program 

Multithreading refers to multiple threads of control within a single program each program can run 

multiple threads of control within it, e.g., Web Browser 

Concurrency vs. Parallelism 

 

Threads and Processes 

What are Threads Good For? 

• To maintain responsiveness of an 

application during a long running task. 

• To enable cancellation of separable tasks. 

• Some problems are intrinsically parallel. 

• To monitor status of some resource (DB). 

• Some APIs and systems demand it: Swing. 

 

Application Thread 

• When we execute an application: 

– The JVM creates a Thread object whose task is defined by the main() method  

– It starts the thread 

– The thread executes the statements of the program one by one until the method returns 
and the thread dies 
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Multiple Threads in an Application 

• Each thread has its private run-time stack  

• If two threads execute the same method, each will have its own copy of the local variables the 
methods uses 

• However, all threads see the same dynamic memory (heap) 

• Two different threads can act on the same object and same static fields concurrently 

Creating Threads 

• There are two ways to create our own Thread object 

1. Subclassing the Thread class and instantiating a new object of that class 

2. Implementing the Runnable interface 

• In both cases the run() method should be implemented 

Extending Thread 

public class ThreadExample extends Thread { 

   public void run () { 
      for (int i = 1; i <= 100; i++) { 
         System.out.println(“Thread: ” + i); 
      } 
   } 
} 

Implementing Runnable 

public class RunnableExample implements Runnable { 

 public void run () { 
  for (int i = 1; i <= 100; i++) { 
           System.out.println (“Runnable: ” + i); 
       } 
    } 
} 

• The Thread object’s run() method calls the Runnable object’s run() method 

• Allows threads to run inside any object, regardless of inheritance 
 

 

Thread Methods 

void start() 

– Creates a new thread and makes it runnable  
– This method can be called only once  

void run() 
– The new thread begins its life inside this method 

void stop() (deprecated) 
The thread is being terminated 
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yield()   Causes the currently executing thread object to temporarily pause and allow 

 other threads to execute 
Allow only threads of the same priority to run 

sleep(int m)/sleep(int m,int n)   
The thread sleeps for m milliseconds, plus n nanoseconds 

Starting the Threads 

 

public class ThreadsStartExample  

{ 

       public static void main (String argv[])  

      { 
              new ThreadExample ().start (); 
              new Thread(new RunnableExample ()).start (); 
       } 
} 

 

Scheduling Threads 

 

                                                                      
 

Example: 

public class PrintThread1 extends Thread 

 {  

    String name;  
    public PrintThread1(String name)  

    {  
        this.name = name;  
    }  
    public void run()  

{ 

 for (int i=1; i<500 ; i++)  

 {  
            try {  
                      sleep((long)(Math.random() * 100));  
                   } catch (InterruptedException ie) { }   
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               System.out.print(name);  
   }  

                                             }  
public static void main(String args[])  

{  

        PrintThread1 a = new PrintThread1("*"); 
        PrintThread1 b = new PrintThread1("-"); 
        PrintThread1 c = new PrintThread1("="); 
        a.start();  
        b.start();  
        c.start();  
} 

                                } 
• Thread scheduling is the mechanism used to determine how runnable threads are allocated CPU 

time 

• A thread-scheduling mechanism is either preemptive or nonpreemptive  

Preemptive Scheduling 
• Preemptive scheduling – the thread scheduler preempts (pauses) a running thread to allow 

different threads to execute 

• Nonpreemptive scheduling – the scheduler never interrupts a running thread 
• The nonpreemptive scheduler relies on the running thread to yield control of the CPU so that 

other threads may execute 

Starvation 
• A nonpreemptive scheduler may cause starvation (runnable threads, ready to be executed, wait 

to be executed in the CPU a lot of time, maybe even forever) 

• Sometimes, starvation is also called a livelock  

Time-Sliced Scheduling 
• Time-sliced scheduling – the scheduler allocates a period of time that each thread can use the 

CPU 

• when that amount of time has elapsed, the scheduler preempts the thread and switches to a 

different thread 
• Nontime-sliced scheduler – the scheduler does not use elapsed time to determine when to 

preempt a thread 
•  it uses other criteria such as priority or I/O status  

 

Java Scheduling 

• Scheduler is preemptive and based on priority of threads 

• Uses fixed-priority scheduling: 
– Threads are scheduled according to their priority w.r.t. other threads in the ready queue 

• The highest priority runnable thread is always selected for execution above lower priority threads 

• When multiple threads have equally high priorities, only one of those threads is guaranteed to be 

executing 
• Java threads are guaranteed to be preemptive-but not time sliced 
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Thread Priority 

• Every thread has a priority 

• When a thread is created, it inherits the priority of the thread that created it 
• The priority values range from 1 to 10, in increasing priority 
• The priority can be adjusted subsequently using the setPriority() method 

• The priority of a thread may be obtained using getPriority() 
•  Priority constants are defined:  

• MIN_PRIORITY=1 
• MAX_PRIORITY=10 
• NORM_PRIORITY=5 

• Thread implementation in Java is actually based on operating system support 

Some Windows operating systems support only 7 priority levels, so different levels in Java may actually be 

mapped to the same operating system level 

Daemon Threads 

• Daemon threads are “background” threads, that provide services to other threads, e.g., the garbage 

collection thread  

• The Java VM will not exit if non-Daemon threads are executing 
• The Java VM will exit if only Daemon threads are executing 
• Daemon threads die when the Java VM exits 

 

Multithreading Client-Server 

• Refer next section 5. Simple Client Server Programming Using Java ,example-2 

Concurrency 

• An object in a program can be changed by more than one thread 

Race Condition 

• A race condition – the outcome of a program is affected by the order in which the program's 
threads are allocated CPU time 

• Two threads are simultaneously modifying a single object 
• Both threads “race” to store their value 

Race Condition Example 

 
 
Monitors 

• Each object has a “monitor” that is a token used to determine which application thread has control 
of a particular object instance 
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• In execution of a synchronized method (or block), access to the object monitor must be gained 
before the execution 

• Access to the object monitor is queued 

• Entering a monitor is also referred to as locking the monitor, or acquiring ownership of the 
monitor 

• If a thread A tries to acquire ownership of a monitor and a different thread has already entered the 
monitor, the current thread (A) must wait until the other thread leaves the monitor 

Critical Section 

• The synchronized methods define critical sections 

• Execution of critical sections is mutually exclusive. 

Thread Synchronization 

• We need to synchronized between transactions, for example, the consumer-producer scenario 

 
• Allows two threads to cooperate 

• Based on a single shared lock object 
– Marge put a cookie wait and notify Homer 
– Homer eat a cookie wait and notify Marge 

• Marge put a cookie wait and notify Homer 
• Homer eat a cookie wait and notify Marge 

The wait() Method 

• The wait() method is part of the java.lang.Object interface 

• It requires a lock on the object’s monitor to execute 
• It must be called from a synchronized method, or from a synchronized segment of code. 

• wait() causes the current thread to wait until another thread invokes the notify() method or the 
notifyAll() method for this object 

• Upon call for wait(), the thread releases ownership of this monitor and waits until another thread 
notifies the waiting threads of the object 

• wait() is also similar to yield()  

• Both take the current thread off the execution stack and force it to be rescheduled 
• However, wait() is not automatically put back into the scheduler queue 

• notify() must be called in order to get a thread back into the scheduler’s queue 
 

Consumer 
synchronized (lock) { 
    while (!resourceAvailable()) { 
        lock.wait(); 
    } 
    consumeResource(); 
} 

Producer 
produceResource(); 
synchronized (lock) { 
    lock.notifyAll(); 
} 
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Wait/Notify Sequence 

 
 
 

4. SOCKETS 

What Is a Socket? 

Normally, a server runs on a specific computer and has a socket that is bound to a specific port number. 
The server just waits, listening to the socket for a client to make a connection request. 

On the client-side: The client knows the hostname of the machine on which the server is running and the 
port number on which the server is listening. To make a connection request, the client tries to rendezvous 
with the server on the server's machine and port. The client also needs to identify itself to the server so it 
binds to a local port number that it will use during this connection. This is usually assigned by the system. 

 

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket 
bound to the same local port and also has its remote endpoint set to the address and port of the client. It 
needs a new socket so that it can continue to listen to the original socket for connection requests while 
tending to the needs of the connected client. 

 

On the client side, if the connection is accepted, a socket is successfully created and the client can use the 
socket to communicate with the server. 

The client and server can now communicate by writing to or reading from their sockets. 

Definition:  

A socket is one endpoint of a two-way communication link between two programs running on the network. 
A socket is bound to a port number so that the TCP layer can identify the application that data is destined 
to be sent to. 
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An endpoint is a combination of an IP address and a port number. Every TCP connection can be uniquely 
identified by its two endpoints. That way you can have multiple connections between your host and the 
server. 

Socket class 

The Socket class can be used to create a socket. 

Important methods 

Method Description 

1) public InputStream getInputStream() returns the InputStream attached with this socket. 

2) public OutputStream getOutputStream() returns the OutputStream attached with this socket. 

3) public synchronized void close() closes this socket 

ServerSocket class 

The ServerSocket class can be used to create a server socket. This object is used to establish 
communication with the clients. 

Important methods 

Method Description 

1) public Socket accept() 
returns the socket and establish a connection between server and 

client. 

2) public synchronized void 

close() 
closes the server socket. 

Example of Java Socket Programming 

• Refer next section 5. Simple Client Server Programming Using Java 

 

5. SIMPLE CLIENT SERVER PROGRAMMING USING JAVA 

Let's see a simple of java socket programming in which client sends a text and server receives it. 

File: MyServer.java 

1. import java.io.*;   
2. import java.net.*;   
3. public class MyServer {   
4. public static void main(String[] args){   
5. try{   
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6. ServerSocket ss=new ServerSocket(6666);   
7. Socket s=ss.accept();//establishes connection    
8. DataInputStream dis=new DataInputStream(s.getInputStream());   
9. String  str=(String)dis.readUTF();   
10. System.out.println("message= "+str);   
11. ss.close();   
12. }catch(Exception e){System.out.println(e);}   
13. }   
14. }   

File: MyClient.java 

1. import java.io.*;   
2. import java.net.*;   
3. public class MyClient {   
4. public static void main(String[] args) {   
5. try{       
6. Socket s=new Socket("localhost",6666);   
7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());   
8. dout.writeUTF("Hello Server");   
9. dout.flush();   
10. dout.close();   
11. s.close();   
12. }catch(Exception e){System.out.println(e);}   
13. }   
14. }   

To execute this program open two command prompts and execute each program at each 
command prompt as displayed in the below figure. 

After running the client application, a message will be displayed on the server console. 

 

 

Example-2: Client Server Multithread programming 

Server 

 

import java.net.*;import java.io.*; 
class HelloServer { 
 public static void main(String[] args)  
{ 
 int port = Integer.parseInt(args[0]); 
 try 
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 { 
    ServerSocket server =  new ServerSocket(port); 
                } 
                catch (IOException ioe)  
               { 
              System.err.println(“Couldn't run “ + “server on port “ + port); 
              return; 
               }       
while(true)  
{ 
       try { 
           Socket connection = server.accept(); 
           ConnectionHandler handler =  new ConnectionHandler(connection); 
           new Thread(handler).start(); 
               } catch (IOException ioe1) {   } 
} 

Connection Handler 
// Handles a connection of a client to an HelloServer. 
// Talks with the client in the 'hello' protocol 
class ConnectionHandler implements Runnable  
{ 

    // The connection with the client 
    private Socket connection; 
    public ConnectionHandler(Socket connection)  
    { 
        this.connection = connection; 
    }                     
public void run()  
{ 
        try { 
            BufferedReader reader = new BufferedReader(new InputStreamReader( 
                      connection.getInputStream())); 
            PrintWriter writer = new PrintWriter(new OutputStreamWriter( 
                     connection.getOutputStream()));  
     
            String clientName = reader.readLine(); 
            writer.println(“Hello “ + clientName); 
            writer.flush(); 
        } catch (IOException ioe) {}  
    } 

} 
 
 

Client side 

import java.net.*; import java.io.*; 
// A client of an HelloServer  
class HelloClient { 
    public static void main(String[] args)  
   { 

        String hostname = args[0]; 
        int port = Integer.parseInt(args[1]); 
        Socket connection = null; 
        try 
        { 
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            connection = new Socket(hostname, port); 
         } 
         catch (IOException ioe) 
        { 
            System.err.println("Connection failed");                     
            return; 
        } 
    try  
      { 
        BufferedReader reader =  new BufferedReader(new InputStreamReader( 
                    connection.getInputStream())); 
        PrintWriter writer =  new PrintWriter(new OutputStreamWriter( 
                    connection.getOutputStream())); 
                   writer.println(args[2]); // client name 
        String reply = reader.readLine(); 
        System.out.println("Server reply: "+reply); 
        writer.flush(); 
    }  
catch (IOException ioe1) {    } 

} 

 

6. Difficulties In Developing Distributed Programs For Large Scale 

Clusters 

Designing and implementing a distributed program for the Large Scale Clusters involves more than just 
sending and receiving messages and deciding upon the computational and architectural models. While all 
these are extremely important, they do not reflect the whole story of developing programs for the 
Distributed Programs For Large Scale Clusters.  
Some Difficulties In Developing Distributed Programs For Large Scale Clusters are: 

1. Heterogeneity 
2. Scalability 
3. Communication 
4.  Synchronization 
5. fault-tolerance and  
6. Security and privacy:  
7. scheduling  
8. Openness and Extensibility 
9. Transparency 

 
 
1 Heterogeneity 

• distributed programs must be designed in a way that masks the heterogeneity of the underlying 
hardware, networks, OSs, and the programming languages 

• Another serious problem that requires a great deal of attention from distributed programmers is 
performance variation. 

• Performance variation entails that running the same distributed program on the same cluster twice 
can result in largely different execution times. 

• Clearly, this can create tricky load-imbalance and subsequently degrade overall performance 
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2. Scalability 

• A distributed program is said to be scalable if it remains effective when the quantities of users, data 
and resources are increased significantly 

• Requires tens and hundreds of thousands of machines to maintain performance and load 
 

3. Communication 
 

• Distributed systems are composed of networked computers that can communicate by explicitly 
passing messages or implicitly accessing shared memories.  

• Even with distributed shared memory systems, messages are internally passed between machines, 
yet in a manner that is totally transparent to users.  

• Distributed systems such as the Big Data rely heavily on the underlying network to deliver 
messages rapidly enough to destination entities for three main reasons, performance, cost and 
quality of service (QoS).  

• Specifically, faster delivery of messages entails minimized execution times, reduced costs and 
higher QoS, especially for audio and video applications.  

• Communication is at the heart of the Large Scale Clusters and is one of its major bottlenecks. 
 
4. Synchronization 

• Distributed tasks should be allowed to simultaneously operate on shared data without corrupting 
data or causing any inconsistency 

• Race-conditions whereby two tasks might try to modify data on a shared edge at the same time, 
resulting in a corrupted value. 

• Wide use of semaphores, locks and barriers 

• Avoiding the deadlock and practicing mutual exclusions are need to apply for synchronizing the 
data  

5. Fault-tolerance 
• The ability to tolerate faults in software system is required in applications like nuclear plant, 

Space missions, medical equipments etc. 

•  Different fault injection techniques are used for fault tolerance by injecting faults in the system 
under test.  

 
6. Security and privacy:  

• How to apply the security policies to the interdependent system is a great issue in distributed 
system. Since distributed systems deal with sensitive data and information so the system must 
have a strong security and privacy measurement.  

• Protection of distributed system assets, including base resources, storage, communications and 
user-interface I/O as well as higher-level composites of  these resources, like processes, files, 
messages, display windows and more complex objects, are important issues in distributed system  

 
7.Scheduling:  

• Focuses on Scheduling problems in homogeneous and heterogeneous parallel distributed systems.  

• The performance of distributed systems are affected by Broadcast/multicast processing and 
required to develop a delivering procedure that completes the processing in minimum time.  

 
8.Openness and Extensibility:  

• Interfaces should be separated and publicly available to enable easy extensions to existing 
components and add new components  

9.Transparency:  

• Transparency means up to what extent the distributed system program should appear to the user 
as a single system? Distributed system must be designed to hide the complexity of the system to a 
greater extent.  
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7. Introduction to cloud computing 

Cloud computing is a form of Internet-based computing that provides shared computer processing 
resources and data to computers and other devices on demand. 

Characteristics  

Cloud computing has a variety of characteristics, with the main ones being: 

Shared Infrastructure 
- Uses a virtualized software model, enabling the sharing of physical services, storage, and 

networking capabilities.  
- The cloud infrastructure, regardless of deployment model, seeks to make the most of the 

available infrastructure  across a number of users. 
 
Dynamic Provisioning 

- Allows for the provision of services based on current demand requirements. This is done 
automatically using software automation, enabling the expansion and contraction of service 
capability, as needed. This dynamic scaling needs to be done while maintaining high levels 
of reliability and security 

Network Access 
- Needs to be accessed across the internet from a broad range of devices such as PCs, laptops, 

and mobile devices, using standards-based APIs (for example, ones based on HTTP).  
- Deployments of services in the cloud include everything from using business applications 

to the latest application on the newest smartphones.  
Managed Metering 

- Uses metering for managing and optimizing the service and to provide reporting and billing 
information.  

- In this way, consumers are billed for services according to how much they have actually 
used during the billing period.  

Service Models 

Once a cloud is established, how its cloud computing services are deployed in terms of business models 
can differ depending on  requirements. The primary service models being deployed (see Figure 1) are 
commonly known as: 
• Software as a Service (SaaS) 

- Consumers purchase the ability to access and use an application or service that is hosted in the 
cloud.  

- A benchmark example of this is Salesforce.com, as discussed previously, where necessary 
information for the interaction between the consumer and the service is hosted as part of the 
service in the cloud.  

- Also, Microsoft is expanding its involvement in this area, and as part of the cloud computing 
option for Microsoft Office 2010, its Office Web Apps are available to Office volume licensing 
customers and Office Web App subscriptions through its cloud-based Online Services. 

• Platform as a Service (PaaS) 
- Consumers purchase access to the platforms, enabling them to deploy their own software and 

applications in the cloud. The operating systems and network access are not managed by the 
consumer, and there might be constraints as to which applications can be deployed.  

• Infrastructure as a Service (IaaS) 
- Consumers control and manage the systems in terms of the operating systems, applications, 

storage, and network connectivity, but do not themselves control the cloud infrastructure. 
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Also known are the various subsets of these models that may be related to a particular industry or market. 
Communications as a Service (CaaS) is one such subset model used to describe hosted IP telephony 
services. Along with the move to CaaS is a shift to more IP-centric communications and more SIP trunking 
deployments. With IP and SIP in place, it can be as easy to have the PBX in the cloud as it is to have it on the 
premise. In this context, CaaS could be seen as a subset of SaaS.  

 

Deployment Models 

Deploying cloud computing can differ depending on requirements, and the following four deployment 
models have been identified, each with specific characteristics that support the needs of the services 
and users of the clouds in particular ways (see Figure 2).  

• Private Cloud 
- The cloud infrastructure has been deployed, and is maintained and operated for a specific 

organization. The operation may be in-house or with a third party on the premises. 
• Community Cloud 

- The cloud infrastructure is shared among a number of organizations with similar interests and 
requirements.  

- This may help limit the capital expenditure costs for its establishment as the costs are shared 
among the organizations. The operation may be in-house or with a third party on the premises. 

• Public Cloud 
- The cloud infrastructure is available to the public on a commercial basis by a cloud service 

provider. This enables a consumer to develop and deploy a service in the cloud with very little 
financial outlay compared to the capital expenditure requirements normally associated with 
other deployment options. 
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• Hybrid Cloud 
- The cloud infrastructure consists of a number of clouds of any type, but the clouds have the 

ability through their interfaces to allow data and/or applications to be moved from one cloud 
to another. This can be a combination of private and public clouds that support the 
requirement to retain some data in an organization, and also the need to offer services in the 
cloud 

 Benefits 

The following are some of the possible benefits for those who offer cloud computing-based 
services and applications:  

• Cost Savings 
— Companies can reduce their capital expenditures and use operational expenditures for 
increasing their computing capabilities. This is a lower barrier to entry and also requires fewer in-
house IT resources to provide system support. 

• Scalability/Flexibility 
— Companies can start with a small deployment and grow to a large deployment fairly rapidly, and 
then scale back if necessary. Also, the flexibility of cloud computing allows companies to use extra 
resources at peak times, enabling them to satisfy consumer demands.  

• Reliability 
— Services using multiple redundant sites can support business continuity and disaster recovery. 

• Maintenance 
— Cloud service providers do the system maintenance, and access is through APIs that do not 
require application installations onto PCs, thus further reducing maintenance requirements. 

• Mobile Accessible 
— Mobile workers have increased productivity due to systems accessible in an infrastructure 
available from anywhere. 

Challenges 

The following are some of the notable challenges associated with cloud computing, and although some of 
these may cause a slowdown when delivering more services in the cloud, most also can provide 
opportunities, if resolved with due care and attention in the planning stages. 

• Security and Privacy 
— Perhaps two of the more “hot button” issues surrounding cloud computing relate to storing and 
securing data, and monitoring the use of the cloud by the service providers. These issues are 
generally attributed to slowing the deployment of cloud services. These challenges can be 
addressed, for example, by storing the information internal to the organization, but allowing it to 
be used in the cloud. For this to occur, though, the security mechanisms between organization and 
the cloud need to be robust and a Hybrid cloud could support such a deployment.  

• Lack of Standards 
— Clouds have documented interfaces; however, no standards are associated with these, and thus 
it is unlikely that most clouds will be interoperable. The Open Grid Forum is developing an Open 
Cloud Computing Interface to resolve this issue and the Open Cloud Consortium is working on 
cloud computing standards and practices. The findings of these groups will need to mature, but it is 
not known whether they will address the needs of the people deploying the services and the 
specific interfaces these services need. However, keeping up to date on the latest standards as they 
evolve will allow them to be leveraged, if applicable.  

 
• Continuously Evolving 

— User requirements are continuously evolving, as are the requirements for interfaces, 
networking, and storage. This means that a “cloud,” especially a public one, does not remain static 
and is also continuously evolving.  
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3. Using HDFS,  

4. Hadoop Architecture,  

5. Internals of Hadoop File Systems. 

 

1. Distributed File systems leading to Hadoop file system 

A distributed file system is mainly designed to hold a large amount of data and provide access to this data to many 

clients distributed across a network. But a distributed file system has got many limitations. 

1. The files reside on on single machine. 

2. It does not provide any reliability guarantees if that machine goes down, this means that it will only store as 

much information as can be stored in one machine. 

3. Finally, as all the data is stored on a single machine, all the clients must go to this machine to retrieve their 

data. This can overload the server if a large number of clients must be handled. Clients must also always 

copy the data to their local machines before they can operate on it. 

To overcome above drawbacks, there came a file system — HDFS (Hadoop Distributed File System.) 

1. HDFS is designed to store a very large amount of information (terabytes or petabytes). This requires 

spreading the data across a large number of machines. It also supports much larger file sizes than DFS. 

2. HDFS should store data reliably. If individual machines in the cluster malfunction, data should still be 

available. 

3. HDFS should provide fast, scalable access to this information. It should be possible to serve a larger 

number of clients by simply adding more machines to the cluster. 

4. HDFS should integrate well with Hadoop MapReduce, allowing data to be read and computed upon locally 

when possible. 

But, HDFS has also got some limitations. 

1. HDFS is optimized to provide streaming read performance; this comes at the expense of random seek times 

to arbitrary positions in files. 

2. Data will be written to the HDFS once and then read several times; updates to files after they have already 

been closed are not supported. 

3. Due to the large size of files, and the sequential nature of reads, the system does not provide a mechanism 

for local caching of data. 

4. Individual machines are assumed to fail on a frequent basis, both permanently and intermittently. The 

cluster must be able to withstand the complete failure of several machines, possibly many happening at the 

same time. 

 
G B Gangadhar
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2.  Introduction 

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity 

hardware. It has many similarities with existing distributed file systems. However, the differences from other 

distributed file systems are significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS provides high throughput access to application data and is suitable for applications that have large 

data sets. HDFS also makes applications available to parallel processing. 

HDFS Goals 

1. Hardware Failure  

Hardware failure is the norm rather than the exception. An HDFS instance may consist of hundreds or 

thousands of server machines, each storing part of the file system’s data. The fact that there are a huge 

number of components and that each component has a non-trivial probability of failure means that some 

component of HDFS is always non-functional. Therefore, detection of faults and quick, automatic recovery 

from them is a core architectural goal of HDFS.  

2. Streaming Data Access  

Applications that run on HDFS need streaming access to their data sets. They are not general purpose 

applications that typically run on general purpose file systems. HDFS is designed more for batch processing 

rather than interactive use by users. The emphasis is on high throughput of data access rather than low 

latency of data access. POSIX imposes many hard requirements that are not needed for applications that are 

targeted for HDFS. POSIX semantics in a few key areas has been traded to increase data throughput rates.  

3. Large Data Sets  

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to terabytes in size. 

Thus, HDFS is tuned to support large files. It should provide high aggregate data bandwidth and scale to 

hundreds of nodes in a single cluster. It should support tens of millions of files in a single instance.  

4. Simple Coherency Model  

HDFS applications need a write-once-read-many access model for files. A file once created, written, and 

closed need not be changed. This assumption simplifies data coherency issues and enables high throughput 

data access. A MapReduce application or a web crawler application fits perfectly with this model. There is 

a plan to support appending-writes to files in the future.  

5. “Moving Computation is Cheaper than Moving Data”  

A computation requested by an application is much more efficient if it is executed near the data it operates 

on. This is especially true when the size of the data set is huge. This minimizes network congestion and 

increases the overall throughput of the system. The assumption is that it is often better to migrate the 

computation closer to where the data is located rather than moving the data to where the application is 

running. HDFS provides interfaces for applications to move themselves closer to where the data is located.  

6. Portability Across Heterogeneous Hardware and Software Platforms  

HDFS has been designed to be easily portable from one platform to another. This facilitates widespread 

adoption of HDFS as a platform of choice for a large set of applications.  
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3. Using HDFS 

Features of Hadoop HDFS 

1 Fault Tolerance 

Fault tolerance in HDFS refers to the working strength of a system in unfavorable conditions and how that 

system can handle such situations. HDFS is highly fault-tolerant, in HDFS data is divided into blocks and multiple 

copies of blocks are created on different machines in the cluster (this replica creation is configurable). So whenever 

if any machine in the cluster goes down, then a client can easily access their data from the other machine which 

contains the same copy of data blocks. HDFS also maintains the replication factor by creating a replica of blocks of 

data on another rack. Hence if suddenly a machine fails, then a user can access data from other slaves present in 

another rack.  

2. High Availability 

HDFS is a highly available file system, data gets replicated among the nodes in the HDFS cluster by 

creating a replica of the blocks on the other slaves present in HDFS cluster. Hence whenever a user wants to access 

his data, they can access their data from the slaves which contains its blocks and which is available on the nearest 

node in the cluster. And during unfavorable situations like a failure of a node, a user can easily access their data 

from the other nodes. Because duplicate copies of blocks which contain user data are created on the other nodes 

present in the HDFS cluster.  

3. Data Reliability 

HDFS is a distributed file system which provides reliable data storage. HDFS can store data in the range of 

100s of petabytes. It stores data reliably on a cluster of nodes. HDFS divides the data into blocks and these blocks 

are stored on nodes present in HDFS cluster. It stores data reliably by creating a replica of each and every block 

present on the nodes present in the cluster and hence provides fault tolerance facility. If node containing data goes 

down, then a user can easily access that data from the other nodes which contain a copy of same data in the HDFS 

cluster. HDFS by default creates 3 copies of blocks containing data present in the nodes in HDFS cluster. Hence 

data is quickly available to the users and hence user does not face the problem of data loss. Hence HDFS is highly 

reliable. 

4. Replication 

Data Replication is one of the most important and unique features of Hadoop HDFS. In HDFS replication 

of data is done to solve the problem of data loss in unfavorable conditions like crashing of a node, hardware failure, 

and so on. As data is replicated across a number of machines in the cluster by creating blocks. The process of 

replication is maintained at regular intervals of time by HDFS and HDFS keeps creating replicas of user data on 

different machines present in the cluster. So whenever any machine in the cluster gets crashed, the user can access 

their data from other machines which contain the blocks of that data. Hence there is no possibility of losing of user 

data.  

5. Scalability 

As HDFS stores data on multiple nodes in the cluster, when requirements increase we can scale the cluster. 

There is two scalability mechanisms available: Vertical scalability – add more resources (CPU, Memory, Disk) on 

the existing nodes of the cluster. Another way is horizontal scalability – Add more machines in the cluster. The 

horizontal way is preferred as we can scale the cluster from 10s of nodes to 100s of nodes on the fly without any 

downtime. 
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6. Distributed Storage 

In HDFS all the features are achieved via distributed storage and replication. In HDFS data is stored in 

distributed manner across the nodes in HDFS cluster. In HDFS data is divided into blocks and is stored on the 

nodes present in HDFS cluster. And then replicas of each and every block are created and stored on other nodes 

present in the cluster. So if a single machine in the cluster gets crashed we can easily access our data from the other 

nodes which contain its replica. 

4. Hadoop Architecture 

 

Hadoop HDFS has a Master/Slave architecture in which Master is NameNode and Slave is DataNode. HDFS 

Architecture consists of single NameNode and all the other nodes are DataNodes. 

 

1. HDFS NameNode 

It is also known as Master node. HDFS Namenode stores meta-data i.e. number of data blocks, replicas 

and other details. This meta-data is available in memory in the master for faster retrieval of data. 

NameNode maintains and manages the slave nodes, and assigns tasks to them. It should deploy on reliable 

hardware as it is the centerpiece of HDFS. 

Task of NameNode 

• Manage file system namespace. 

• Regulates client’s access to files. 

• It also executes file system execution such as naming, closing, opening files/directories. 

• All DataNodes sends a Heartbeat and block report to the NameNode in the Hadoop cluster. It 

ensures that the DataNodes are alive. A block report contains a list of all blocks on a datanode. 

• NameNode is also responsible for taking care of the Replication Factor of all the blocks. 

Files present in the NameNode metadata are as follows- 

FsImage – 

It is an “Image file”. FsImage contains the entire filesystem namespace and stored as a file in the 

namenode’s local file system. It also contains a serialized form of all the directories and file inodes in the 

filesystem. Each inode is an internal representation of file or directory’s metadata. 



INTRODUCTION TO BIG DATA   UNIT-2 
 

   5 
 

EditLogs – 

It contains all the recent modifications made to the file system on the most recent FsImage. Namenode 

receives a create/update/delete request from the client. After that this request is first recorded to edits file. 

2. HDFS DataNode 

It is also known as Slave. In Hadoop HDFS Architecture, DataNode stores actual data in HDFS. It 

performs read and write operation as per the request of the client. DataNodes can deploy on commodity 

hardware. 

Task of DataNode 

• Block replica creation, deletion, and replication according to the instruction of Namenode. 

• DataNode manages data storage of the system. 

• DataNodes send heartbeat to the NameNode to report the health of HDFS. By default, this 

frequency is set to 3 seconds. 

3. Secondary NameNode 

In HDFS, when NameNode starts, first it reads HDFS state from an image file, FsImage. After that, it 

applies edits from the edits log file. NameNode then writes new HDFS state to the FsImage. Then it starts 

normal operation with an empty edits file. At the time of start-up, NameNode merges FsImage and edits 

files, so the edit log file could get very large over time. A side effect of a larger edits file is that next restart 

of Namenode takes longer. 

Secondary Namenode solves this issue. Secondary NameNode downloads the FsImage and EditLogs from 

the NameNode. And then merges EditLogs with the FsImage (FileSystem Image). It keeps edits log size 

within a limit. It stores the modified FsImage into persistent storage. And we can use it in the case of 

NameNode failure. 

Secondary NameNode performs a regular checkpoint in HDFS. 

4. Checkpoint Node 

The Checkpoint node is a node which periodically creates checkpoints of the namespace. Checkpoint 

Node in Hadoop first downloads FsImage and edits from the Active Namenode. Then it merges them 

(FsImage and edits) locally, and at last, it uploads the new image back to the active NameNode. It stores the 

latest checkpoint in a directory that has the same structure as the Namenode’s directory. This permits the 

checkpointed image to be always available for reading by the namenode if necessary. 

5. Backup Node 

A Backup node provides the same checkpointing functionality as the Checkpoint node. In Hadoop, Backup 

node keeps an in-memory, up-to-date copy of the file system namespace. It is always synchronized with the 

active NameNode state. The backup node in HDFS Architecture does not need to download FsImage and 

edits files from the active NameNode to create a checkpoint. It already has an up-to-date state of the 

namespace state in memory. The Backup node checkpoint process is more efficient as it only needs to save 

the namespace into the local FsImage file and reset edits. NameNode supports one Backup node at a time. 

6. The File System Namespace  

HDFS supports a traditional hierarchical file organization. A user or an application can create directories 

and store files inside these directories. The file system namespace hierarchy is similar to most other existing 
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file systems; one can create and remove files, move a file from one directory to another, or rename a file. 

HDFS does not yet implement user quotas. HDFS does not support hard links or soft links. However, the 

HDFS architecture does not preclude implementing these features.  

The NameNode maintains the file system namespace. Any change to the file system namespace or its 

properties is recorded by the NameNode. An application can specify the number of replicas of a file that 

should be maintained by HDFS. The number of copies of a file is called the replication factor of that file. 

This information is stored by the NameNode.  

5. Internals of Hadoop File Systems 

Data Replication  

HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a 

sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are 

replicated for fault tolerance. The block size and replication factor are configurable per file. An application 

can specify the number of replicas of a file. The replication factor can be specified at file creation time and 

can be changed later. Files in HDFS are write-once and have strictly one writer at any time.  

The NameNode makes all decisions regarding replication of blocks. It periodically receives a Heartbeat and 

a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode 

is functioning properly. A Blockreport contains a list of all blocks on a DataNode.  

 

Replica Placement: The First Baby Steps  

The placement of replicas is critical to HDFS reliability and performance. Optimizing replica placement 

distinguishes HDFS from most other distributed file systems. This is a feature that needs lots of tuning and 

experience. The purpose of a rack-aware replica placement policy is to improve data reliability, availability, 

and network bandwidth utilization. The current implementation for the replica placement policy is a first 

effort in this direction. The short-term goals of implementing this policy are to validate it on production 

systems, learn more about its behavior, and build a foundation to test and research more sophisticated 

policies.  

Large HDFS instances run on a cluster of computers that commonly spread across many racks. 

Communication between two nodes in different racks has to go through switches. In most cases, network 
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bandwidth between machines in the same rack is greater than network bandwidth between machines in 

different racks.  

The NameNode determines the rack id each DataNode belongs to via the process outlined in Hadoop Rack 

Awareness. A simple but non-optimal policy is to place replicas on unique racks. This prevents losing data 

when an entire rack fails and allows use of bandwidth from multiple racks when reading data. This policy 

evenly distributes replicas in the cluster which makes it easy to balance load on component failure. 

However, this policy increases the cost of writes because a write needs to transfer blocks to multiple racks.  

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica 

on one node in the local rack, another on a node in a different (remote) rack, and the last on a different node 

in the same remote rack. This policy cuts the inter-rack write traffic which generally improves write 

performance. The chance of rack failure is far less than that of node failure; this policy does not impact data 

reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when 

reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas 

of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of 

replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy 

improves write performance without compromising data reliability or read performance.  

The current, default replica placement policy described here is a work in progress.  

Replica Selection  

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read request from a 

replica that is closest to the reader. If there exists a replica on the same rack as the reader node, then that 

replica is preferred to satisfy the read request. If angg/ HDFS cluster spans multiple data centers, then a 

replica that is resident in the local data center is preferred over any remote replica.  

Safemode  

On startup, the NameNode enters a special state called Safemode. Replication of data blocks does not occur 

when the NameNode is in the Safemode state. The NameNode receives Heartbeat and Blockreport 

messages from the DataNodes. A Blockreport contains the list of data blocks that a DataNode is hosting. 

Each block has a specified minimum number of replicas. A block is considered safely replicated when the 

minimum number of replicas of that data block has checked in with the NameNode. After a configurable 

percentage of safely replicated data blocks checks in with the NameNode (plus an additional 30 seconds), 

the NameNode exits the Safemode state. It then determines the list of data blocks (if any) that still have 

fewer than the specified number of replicas. The NameNode then replicates these blocks to other 

DataNodes.  

The Persistence of File System Metadata  

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction log called the 

EditLog to persistently record every change that occurs to file system metadata. For example, creating a 

new file in HDFS causes the NameNode to insert a record into the EditLog indicating this. Similarly, 

changing the replication factor of a file causes a new record to be inserted into the EditLog. The NameNode 

uses a file in its local host OS file system to store the EditLog. The entire file system namespace, including 

the mapping of blocks to files and file system properties, is stored in a file called the FsImage. The FsImage 

is stored as a file in the NameNode’s local file system too.  

The NameNode keeps an image of the entire file system namespace and file Blockmap in memory. This 

key metadata item is designed to be compact, such that a NameNode with 4 GB of RAM is plenty to 

support a huge number of files and directories. When the NameNode starts up, it reads the FsImage and 

EditLog from disk, applies all the transactions from the EditLog to the in-memory representation of the 

FsImage, and flushes out this new version into a new FsImage on disk. It can then truncate the old EditLog 
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because its transactions have been applied to the persistent FsImage. This process is called a checkpoint. In 

the current implementation, a checkpoint only occurs when the NameNode starts up. Work is in progress to 

support periodic checkpointing in the near future.  

The DataNode stores HDFS data in files in its local file system. The DataNode has no knowledge about 

HDFS files. It stores each block of HDFS data in a separate file in its local file system. The DataNode does 

not create all files in the same directory. Instead, it uses a heuristic to determine the optimal number of files 

per directory and creates subdirectories appropriately. It is not optimal to create all local files in the same 

directory because the local file system might not be able to efficiently support a huge number of files in a 

single directory. When a DataNode starts up, it scans through its local file system, generates a list of all 

HDFS data blocks that correspond to each of these local files and sends this report to the NameNode: this is 

the Blockreport.  

The Communication Protocols 

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client establishes a 

connection to a configurable TCP port on the NameNode machine. It talks the ClientProtocol with the 

NameNode. The DataNodes talk to the NameNode using the DataNode Protocol. A Remote Procedure Call 

(RPC) abstraction wraps both the Client Protocol and the DataNode Protocol. By design, the NameNode 

never initiates any RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients. 

Robustness 

The primary objective of HDFS is to store data reliably even in the presence of failures. The three common 

types of failures are NameNode failures, DataNode failures and network partitions. 

Data Disk Failure, Heartbeats and Re-Replication 

Each DataNode sends a Heartbeat message to the NameNode periodically. A network partition can cause a 

subset of DataNodes to lose connectivity with the NameNode. The NameNode detects this condition by the 

absence of a Heartbeat message. The NameNode marks DataNodes without recent Heartbeats as dead and 

does not forward any new IO requests to them. Any data that was registered to a dead DataNode is not 

available to HDFS any more. DataNode death may cause the replication factor of some blocks to fall below 

their specified value. The NameNode constantly tracks which blocks need to be replicated and initiates 

replication whenever necessary. The necessity for re-replication may arise due to many reasons: a 

DataNode may become unavailable, a replica may become corrupted, a hard disk on a DataNode may fail, 

or the replication factor of a file may be increased. 

The time-out to mark DataNodes dead is conservatively long (over 10 minutes by default) in order to avoid 

replication storm caused by state flapping of DataNodes. Users can set shorter interval to mark DataNodes 

as stale and avoid stale nodes on reading and/or writing by configuration for performance sensitive 

workloads. 

Cluster Rebalancing 

The HDFS architecture is compatible with data rebalancing schemes. A scheme might automatically move 

data from one DataNode to another if the free space on a DataNode falls below a certain threshold. In the 

event of a sudden high demand for a particular file, a scheme might dynamically create additional replicas 

and rebalance other data in the cluster. These types of data rebalancing schemes are not yet 

implemented. 
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Data Integrity 

It is possible that a block of data fetched from a DataNode arrives corrupted. This corruption can occur 

because of faults in a storage device, network faults, or buggy software. The HDFS client software 

implements checksum checking on the contents of HDFS files. When a client creates an HDFS file, it 

computes a checksum of each block of the file and stores these checksums in a separate hidden file in the 

same HDFS namespace. When a client retrieves file contents it verifies that the data it received from each 

DataNode matches the checksum stored in the associated checksum file. If not, then the client can opt to 

retrieve that block from another DataNode that has a replica of that block. 

Metadata Disk Failure 

The FsImage and the EditLog are central data structures of HDFS. A corruption of these files can cause the 

HDFS instance to be non-functional. For this reason, the NameNode can be configured to support 

maintaining multiple copies of the FsImage and EditLog. Any update to either the FsImage or EditLog 

causes each of the FsImages and EditLogs to get updated synchronously. This synchronous updating of 

multiple copies of the FsImage and EditLog may degrade the rate of namespace transactions per second 

that a NameNode can support. However, this degradation is acceptable because even though HDFS 

applications are very data intensive in nature, they are not metadata intensive. When a NameNode restarts, 

it selects the latest consistent FsImage and EditLog to use. 

Another option to increase resilience against failures is to enable High Availability using multiple 

NameNodes either with a shared storage on NFS or using a distributed edit log (called Journal). The latter 

is the recommended approach. 

Snapshots 

Snapshots support storing a copy of data at a particular instant of time. One usage of the snapshot feature 

may be to roll back a corrupted HDFS instance to a previously known good point in time. 

Data Organization 

Data Blocks 

HDFS is designed to support very large files. Applications that are compatible with HDFS are those that 

deal with large data sets. These applications write their data only once but they read it one or more times 

and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics 

on files. A typical block size used by HDFS is 128 MB. Thus, an HDFS file is chopped up into 128 MB 

chunks, and if possible, each chunk will reside on a different DataNode. 

Staging 

A client request to create a file does not reach the NameNode immediately. In fact, initially the HDFS 

client caches the file data into a local buffer. Application writes are transparently redirected to this local 

buffer. When the local file accumulates data worth over one chunk size, the client contacts the NameNode. 

The NameNode inserts the file name into the file system hierarchy and allocates a data block for it. The 

NameNode responds to the client request with the identity of the DataNode and the destination data block. 

Then the client flushes the chunk of data from the local buffer to the specified DataNode. When a file is 

closed, the remaining un-flushed data in the local buffer is transferred to the DataNode. The client then tells 

the NameNode that the file is closed. At this point, the NameNode commits the file creation operation into 

a persistent store. If the NameNode dies before the file is closed, the file is lost. 

The above approach has been adopted after careful consideration of target applications that run on HDFS. 

These applications need streaming writes to files. If a client writes to a remote file directly without any 

client side buffering, the network speed and the congestion in the network impacts throughput considerably. 

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html
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This approach is not without precedent. Earlier distributed file systems, e.g. AFS, have used client side 

caching to improve performance. A POSIX requirement has been relaxed to achieve higher performance of 

data uploads. 

Replication Pipelining 

When a client is writing data to an HDFS file, its data is first written to a local buffer as explained in the 

previous section. Suppose the HDFS file has a replication factor of three. When the local buffer 

accumulates a chunk of user data, the client retrieves a list of DataNodes from the NameNode. This list 

contains the DataNodes that will host a replica of that block. The client then flushes the data chunk to the 

first DataNode. The first DataNode starts receiving the data in small portions, writes each portion to its 

local repository and transfers that portion to the second DataNode in the list. The second DataNode, in turn 

starts receiving each portion of the data block, writes that portion to its repository and then flushes that 

portion to the third DataNode. Finally, the third DataNode writes the data to its local repository. Thus, a 

DataNode can be receiving data from the previous one in the pipeline and at the same time forwarding data 

to the next one in the pipeline. Thus, the data is pipelined from one DataNode to the next. 

Hadoop HDFS Data Write Operation 

i) The HDFS client sends a create request on DistributedFileSystem APIs. 

ii) DistributedFileSystem makes an RPC call to the namenode to create a new file in the file system’s namespace. 

The namenode performs various checks to make sure that the file doesn’t already exist and that the client has the 

permissions to create the file. When these checks pass, then only the namenode makes a record of the new file; 

otherwise, file creation fails and the client is thrown an IOException. 

iii) The DistributedFileSystem returns a FSDataOutputStream for the client to start writing data to. As the client 

writes data, DFSOutputStream splits it into packets, which it writes to an internal queue, called the data queue. The 

data queue is consumed by the DataStreamer, whichI is responsible for asking the namenode to allocate new blocks 

by picking a list of suitable datanodes to store the replicas. 

 

iv) The list of datanodes form a pipeline, and here we’ll assume the replication level is three, so there are three 

nodes in the pipeline. The DataStreamer streams the packets to the first datanode in the pipeline, which stores the 

packet and forwards it to the second datanode in the pipeline. Similarly, the second datanode stores the packet and 

forwards it to the third (and last) datanode in the pipeline. 
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v) DFSOutputStream also maintains an internal queue of packets that are waiting to be acknowledged by datanodes, 

called the ack queue. A packet is removed from the ack queue only when it has been acknowledged by the 

datanodes in the pipeline. Datanode sends the acknowledgment once required replicas are created (3 by default). 

Similarly, all the blocks are stored and replicated on the different datanodes, the data blocks are copied in parallel. 

vi) When the client has finished writing data, it calls close() on the stream. 

vii) This action flushes all the remaining packets to the datanode pipeline and waits for acknowledgments before 

contacting the namenode to signal that the file is complete. The namenode already knows which blocks the file is 

made up of, so it only has to wait for blocks to be minimally replicated before returning successfully. 

HDFS Data Read Operation 

i) Client opens the file it wishes to read by calling open() on the FileSystem object, which for HDFS is an instance 

of DistributedFileSystem. 

ii) DistributedFileSystem calls the namenode using RPC to determine the locations of the blocks for the first few 

blocks in the file. For each block, the namenode returns the addresses of the datanodes that have a copy of that 

block and datanode are sorted according to their proximity to the client. 

 

 

iii) DistributedFileSystem returns a FSDataInputStream to the client for it to read data from. FSDataInputStream, 

thus, wraps the DFSInputStream which manages the datanode and namenode I/O. Client calls read() on the stream. 

DFSInputStream which has stored the datanode addresses then connects to the closest datanode for the first block in 

the file. 

iv) Data is streamed from the datanode back to the client, as a result client can call read() repeatedly on the stream. 

When the block ends, DFSInputStream will close the connection to the datanode and then finds the best datanode 

for the next block. 

v) If the DFSInputStream encounters an error while communicating with a datanode, it will try the next closest one 

for that block. It will also remember datanodes that have failed so that it doesn’t needlessly retry them for later 

blocks. The DFSInputStream also verifies checksums for the data transferred to it from the datanode. If it finds a 
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corrupt block, it reports this to the namenode before the DFSInputStream attempts to read a replica of the block 

from another datanode. 

vi) When the client has finished reading the data, it calls close() on the stream 

Fault Tolerance in HDFS 

As we have discussed HDFS data read and write operations in detail, Now, what happens when one of the machines 

i.e. part of the pipeline which has a datanode process running fails. Hadoop has an inbuilt functionality to handle 

this scenario (HDFS is fault tolerant). When a datanode fails while data is being written to it, then the following 

actions are taken, which are transparent to the client writing the data. 

• First, the pipeline is closed, and any packets in the ack queue are added to the front of the data queue so that 

datanode that are downstream from the failed node will not miss any packets. 

• The current block on the good datanode is given a new identity, which is communicated to the namenode so 

that the partial block on the failed datanode will be deleted if the failed datanode recovery later on. 

• The datanode that fails is removed from the pipeline, and then the remainder of the block’s data is written 

to the two good datanodes in the pipeline. 

• The namenode notices that the block is under-replicated, and it arranges for a further replica to be created 

on another node. Then it treats the subsequent blocks as normal. 

 

 

http://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
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Unit-3 

1. Map-Reduce Programming:   Developing Distributed Programs and issues 

2. why map- reduce and conceptual understanding of Map-Reduce programming 

3. Developing Map-Reduce programs in Java 

4. setting up the cluster with HDFS and understanding how Map- Reduce works on 

HDFS 

5. Running simple word count Map-Reduce program on the cluster 

6. Additional examples of M-R Programming. 

 

 

1. DEVELOPING DISTRIBUTED PROGRAMS AND ISSUES 
 
 

Scalability: Scaling is one of the major issues of Developing Distributed Programs. The scaling issue 

consists of dimensions like communication capacity. The program should be designed such that the 

capacity may be increased with the increasing demand on the system. 

Heterogeneity: It is an important design issue for the distributed programming. The communications 

infrastructure consists of channels of different capacities. End-Systems will possess a wide variety of 

presentation techniques. 

Objects representation and translation: Selecting the best programming models for distributed 

objects like CORBA, Java etc. is an important issue. 

Resource management: In Developing Distributed Programs, objects consisting of resources are 

located on different places. Routing is an issue at the network layer of the distributed system and at 

the application layer.  

Security and privacy: How to apply the security policies to the interdependent system is a great 

issue in Developing Distributed Programs. Since Distributed Programs deal with sensitive data and 

information so the program must have a strong security and privacy measurement. Protection of 

distributed system assets, including base resources, storage, communications and user-interface I/O 

as well as higher-level composites of these resources, like processes, files, messages, display 

windows and more complex objects, are important issues in distributed program 

Transparency: Transparency means up to what extent the distributed system should appear to the 

user as a single system? Distributed program must be designed to hide the complexity of the system 

to a greater extent. 

Openness: Openness means up to what extent a system be designed using standard protocols to 

support Interoperability. It is desired for developers to add new features or replace subsystem in 

future. To accomplish this, distributed program must have well defined interfaces. 

Quality of Service: How to specify the quality of service given to system users and acceptable level 

of quality of service delivered to the users. The quality of service is heavily dependent on the 

processes to be allocated to the processors in the system, resource distribution, hardware, adaptability 

of the program, network etc. A good performance, availability and reliability are required to reflect 

good quality of service. 

Failure management: How can failure of the system be detected and repaired. 

Synchronization: One of the most important issues that engineers of distributed programs are facing 

is synchronizing computations consisting of thousands of components. Current methods of 

synchronization like semaphores, monitors, barriers, remote procedure call, object method 

invocation, and message passing, do not scale well. 

Resource identification: The resources are distributed across various computers and a proper 

naming scheme is to be designed for exact reference of the resources. 

 

G B Gangadhar
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Communications: Distributed Systems have become more effective with the advent of Internet but 

there are certain requirements for performance, reliability etc. Effective approaches to 

communication should be used. 

Software Architectures: It reflects the application functionality distributed over the logical 

components and across the processors. Selecting the right architecture for an application is required 

for better quality of service. 

Performance analysis: The Performance analysis of Distributed software program is a great issue. It 

is expected that it should be high speed, fault tolerant and cost effective. It is also essential towards 

evaluating alternative design to meet the Quality of service. Moreover the ability to estimate the 

future performance of a large and complex distributed software program at design time can reduce 

the software cost and risk. 

Generating a Test Data: Generating a test data to cover the respective test criteria for testing the 

component is a difficult task. It becomes more difficult in case of distributed program because the 

number of possible paths increases significantly. Test cases must cover the low level elements. 

Component selection for testing: Testing distributed components require the services of other 

components. When a component is used with other there could be a possibility of deadlocks and race 

condition. There may be no error detected when only one client is used because only one thread is 

executed but in the case of multithreading the number of clients used for testing the components may 

detect the errors. 

Test Sequence: The component is to be tested along with other components. What orders should be 

followed in testing components? If the components do not follow the layered architectural model, 

there could be chances of cycles among the components. 

Testing for system scalability and performance: Scalability of conventional test criteria of data is a 

major issue in the context of testing. The concept of threading may be used in the components for 

improved performance while testing. But using multiple threads is a challenging task in testing. 

Redundant testing during integration of component: components are first tested separately. When 

the entire program is tested, lots of retesting of component occurs. 

Availability of source code: Software components may be developed in house or off- the- shelf. 

Depending upon the availability of source code various testing techniques are used for the system 

testing. 

Heterogeneous languages, platform and Architecture: Different languages may be used for 

writing the components of the system. The components may be used on different hardware and 

software platform. 

Monitoring and control mechanism in testing distributed software: Distributed software system 

involves multiple computers on the network. Testing monitoring and control mechanism in 

distributed environment is complex compared with centralized software system. Monitoring 

Distributed System services are also important for debugging during program development and 

required as part of the application itself like process control and automation. 

Reproducibility of Events: Reproducibility of events is a challenging task because of concurrent 

processing and asynchronous communication occurring in the distributed environment. Moreover the 

lack of full control over the environment is another hurdle in this regards. 

Deadlocks and Race Conditions: Deadlocks and race conditions are other great issues while 

developing distributed programs especially in the context of testing. It becomes more important issue 

especially in shared memory multiprocessor environment . 

Testing for fault tolerance: The ability to tolerate faults in software system is required in 

applications like nuclear plant, Space missions, medical equipments etc. Testing for fault tolerance is 

challenging because the fault recovery code hardly gets executed while testing. Different fault 

injection techniques are used for fault tolerance by injecting faults in the program under test. 

Scheduling issue for distributed program:  Focuses on Scheduling problems in homogeneous and 

heterogeneous parallel distributed systems. The performance of distributed programs are affected by 

bigdataj.blogspot.com
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Broadcast/multicast processing and required to develop a delivering procedure that completes the 

processing in minimum time. 

Controllability and Observability issues : Controllability and observability are two important 

issues in testing because they have an effect on the capability of the test system to check the 

conformance of an implementation 

under test. Controllability is the capability of the Test System to force the Implementation under Test 

to receive inputs in a given order. 
 
Distributed Task Allocation: Finding an optimal Task allocation in developing distributed program 

is a challenging job keeping in mind the concept of reliability and performance. 

 

 

 

2. WHY MAP- REDUCE AND CONCEPTUAL UNDERSTANDING OF MAP-REDUCE 
PROGRAMMING 

MapReduce is a programming model for writing applications that can process Big Data in 

parallel on multiple nodes. MapReduce provides analytical capabilities for analyzing huge volumes 

of complex data. 

What is Big Data? 

Big Data is a collection of large datasets that cannot be processed using traditional computing 

techniques. For example, the volume of data Facebook or YouTube need require it to collect and 

manage on a daily basis, can fall under the category of Big Data. However, Big Data is not only 

about scale and volume, it also involves one or more of the following aspects − Velocity, Variety, 

Volume, and Complexity. 

Why MapReduce? 

Traditional Enterprise Systems normally have a centralized server to store and process data. The 

following illustration depicts a schematic view of a traditional enterprise system. Traditional model is 

certainly not suitable to process huge volumes of scalable data and cannot be accommodated by 

standard database servers. Moreover, the centralized system creates too much of a bottleneck while 

processing multiple files simultaneously. 

 

Google solved this bottleneck issue using an algorithm called MapReduce. MapReduce divides a task 

into small parts and assigns them to many computers. Later, the results are collected at one place and 

integrated to form the result dataset. 
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MapReduce programs work in two phases:  

1. Map phase  

2. Reduce phase. 

Input to each phase are key-value pairs. In addition, every programmer needs to specify two 

functions: map function and reduce function.  

The whole process goes through three phase of execution namely,  

How MapReduce works  

Lets understand this with an example –  

Consider you have following input data for your MapReduce Program  

Welcome to Hadoop Class  

Hadoop is good  

Hadoop is bad  

 

The final output of the MapReduce task is 

bad   1  

Class   1  

good   1  

Hadoop   3  

is   2  

to   1  

Welcome   1  

bigdataj.blogspot.com
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The data goes through following phases  

Input Splits:  

Input to a MapReduce job is divided into fixed-size pieces called input splits Input split is a chunk of 

the input that is consumed by a single map  

Mapping  

This is very first phase in the execution of map-reduce program. In this phase data in each split is 

passed to a mapping function to produce output values. In our example, job of mapping phase is to 

count number of occurrences of each word from input splits (more details about input-split is given 

below) and prepare a list in the form of <word, frequency>  

Shuffling  

This phase consumes output of Mapping phase. Its task is to consolidate the relevant records from 

Mapping phase output. In our example, same words are clubed together along with their respective 

frequency.  

Reducing  

In this phase, output values from Shuffling phase are aggregated. This phase combines values from 

Shuffling phase and returns a single output value. In short, this phase summarizes the complete 

dataset. 

In our example, this phase aggregates the values from Shuffling phase i.e., calculates total 

occurrences of each words.  

The overall process in detail  

 One map task is created for each split which then executes map function for each record in 

the split. 

 It is always beneficial to have multiple splits, because time taken to process a split is small 

as compared to the time taken for processing of the whole input. When the splits are smaller, 

the processing is better load balanced since we are processing the splits in parallel. 

 However, it is also not desirable to have splits too small in size. When splits are too small, 

the overload of managing the splits and map task creation begins to dominate the total job 

execution time. 

 For most jobs, it is better to make split size equal to the size of an HDFS block (which is 64 

MB, by default). 

 Execution of map tasks results into writing output to a local disk on the respective node and 

not to HDFS. 

 Reason for choosing local disk over HDFS is, to avoid replication which takes place in case 

of HDFS store operation. 

 Map output is intermediate output which is processed by reduce tasks to produce the final 

output. 

 Once the job is complete, the map output can be thrown away. So, storing it in HDFS with 

replication becomes overkill. 

 In the event of node failure before the map output is consumed by the reduce task, Hadoop 

reruns the map task on another node and re-creates the map output. 

 Reduce task don't work on the concept of data locality. Output of every map task is fed to 

the reduce task. Map output is transferred to the machine where reduce task is running. 

 On this machine the output is merged and then passed to the user defined reduce function. 

 Unlike to the map output, reduce output is stored in HDFS (the first replica is stored on the 

local node and other replicas are stored on off-rack nodes). So, writing the reduce output 
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How MapReduce Organizes Work?  

Hadoop divides the job into tasks. There are two types of tasks:  

1. Map tasks (Spilts & Mapping) 

2. Reduce tasks (Shuffling, Reducing) as mentioned above.  

The complete execution process (execution of Map and Reduce tasks, both) is controlled by two 

types of entities called a  

1. Jobtracker : Acts like a master (responsible for complete execution of submitted job) 

2. Multiple Task Trackers : Acts like slaves, each of them performing the job 

For every job submitted for execution in the system, there is one Jobtracker that resides 

on Namenode and there are multiple tasktrackers which reside on Datanode. 

 A job is divided into multiple tasks which are then run onto multiple data nodes in a cluster. 

 It is the responsibility of jobtracker to coordinate the activity by scheduling tasks to run on 

different data nodes. 

 Execution of individual task is then look after by tasktracker, which resides on every data 

node executing part of the job. 

 Tasktracker's responsibility is to send the progress report to the jobtracker. 

 In addition, tasktracker periodically sends 'heartbeat' signal to the Jobtracker so as to notify 

him of current state of the system.  

 Thus jobtracker keeps track of overall progress of each job. In the event of task failure, the 

jobtracker can reschedule it on a different tasktracker. 

 

3. DEVELOPING MAP-REDUCE PROGRAMS IN JAVA 

Given below is the data regarding the electrical consumption of an organization. It contains the 

monthly electrical consumption and the annual average for various years. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg 

1979 23 23 2 43 24 25 26 26 26 26 25 26 25 

1980 26 27 28 28 28 30 31 31 31 30 30 30 29 

1981 31 32 32 32 33 34 35 36 36 34 34 34 34 

1984 39 38 39 39 39 41 42 43 40 39 38 38 40 

1985 38 39 39 39 39 41 41 41 00 40 39 39 45 
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If the above data is given as input, we have to write applications to process it and produce results 

such as finding the year of maximum usage, year of minimum usage, and so on. This is a walkover 

for the programmers with finite number of records. They will simply write the logic to produce the 

required output, and pass the data to the application written. 

But, think of the data representing the electrical consumption of all the largescale industries of a 

particular state, since its formation. 

When we write applications to process such bulk data, 

 They will take a lot of time to execute. 

 There will be a heavy network traffic when we move data from source to network server and 

so on. 

To solve these problems, we have the MapReduce framework. 

Input Data 

The above data is saved as sample.txt and given as input. The input file looks as shown 

below. 

1979   23   23   2   43   24   25   26   26   26   26   25   26  25 

1980   26   27   28  28   28   30   31   31   31   30   30   30  29 

1981   31   32   32  32   33   34   35   36   36   34   34   34  34 

1984   39   38   39  39   39   41   42   43   40   39   38   38  40 

1985   38   39   39  39   39   41   41   41   00   40   39   39  45 

Example Program 

Given below is the program to the sample data using MapReduce framework. 

package hadoop;  
 
import java.util.*;  
 
import java.io.IOException;  
import java.io.IOException;  
 
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.conf.*;  
import org.apache.hadoop.io.*;  
import org.apache.hadoop.mapred.*;  
import org.apache.hadoop.util.*;  
 
public class ProcessUnits  
{  
   //Mapper class  
   public static class E_EMapper extends MapReduceBase implements  
   Mapper<LongWritable , /*Input key Type */  
   Text,               /*Input value Type*/  
   Text,                 /*Output key Type*/  
   IntWritable>          /*Output value Type*/  
   {  
       
      //Map function  
      public void map(LongWritable key, Text value,  
      OutputCollector<Text, IntWritable> output,    
      Reporter reporter) throws IOException  
      {  
         String line = value.toString();  
         String lasttoken = null;  
         StringTokenizer s = new StringTokenizer(line,"\t");  
         String year = s.nextToken();  
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         while(s.hasMoreTokens()) 
            { 
               lasttoken=s.nextToken(); 
            }  
             
         int avgprice = Integer.parseInt(lasttoken);  
         output.collect(new Text(year), new IntWritable(avgprice));  
      }  
   }  
    
    
   //Reducer class  
   public static class E_EReduce extends MapReduceBase implements  
   Reducer< Text, IntWritable, Text, IntWritable >  
   {   
    
      //Reduce function  
      public void reduce( Text key, Iterator <IntWritable> values,  
         OutputCollector<Text, IntWritable> output, Reporter reporter) throws 
IOException  
         {  
            int maxavg=30;  
            int val=Integer.MIN_VALUE;  
             
            while (values.hasNext())  
            {  
               if((val=values.next().get())>maxavg)  
               {  
                  output.collect(key, new IntWritable(val));  
               }  
            }  
  
         }  
   }   
    
    
   //Main function  
   public static void main(String args[])throws Exception  
   {  
      JobConf conf = new JobConf(ProcessUnits.class);  
       
      conf.setJobName("max_eletricityunits");  
      conf.setOutputKeyClass(Text.class); 
      conf.setOutputValueClass(IntWritable.class);  
      conf.setMapperClass(E_EMapper.class);  
      conf.setCombinerClass(E_EReduce.class);  
      conf.setReducerClass(E_EReduce.class);  
      conf.setInputFormat(TextInputFormat.class);  
      conf.setOutputFormat(TextOutputFormat.class);  
       
      FileInputFormat.setInputPaths(conf, new Path(args[0]));  
      FileOutputFormat.setOutputPath(conf, new Path(args[1]));  
       
      JobClient.runJob(conf);  
   }  
}  

Save the above program as ProcessUnits.java. The compilation and execution of the program is 

explained below. 

Compilation and Execution of Process Units Program 

Let us assume we are in the home directory of a Hadoop user (e.g. /home/hadoop). 

Follow the steps given below to compile and execute the above program. 
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Step 1 

The following command is to create a directory to store the compiled java classes. 

$ mkdir units  

Step 2 

Download Hadoop-core-2.6.5.jar, which is used to compile and execute the MapReduce program. 

Visit the following link http://www-us.apache.org/dist/hadoop/common/hadoop-2.6.5/hadoop-

2.6.5.tar.gz to download the jar. Let us assume the downloaded folder is /home/hadoop/. 

Step 3 

The following commands are used for compiling the ProcessUnits.java program and creating a jar 

for the program. 

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java  

$ jar -cvf units.jar -C units/ .  

Step 4 

The following command is used to create an input directory in HDFS. 

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir  

Step 5 

The following command is used to copy the input file named sample.txtin the input directory of 

HDFS. 

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir  

Step 6 

The following command is used to verify the files in the input directory. 

$HADOOP_HOME/bin/hadoop fs -ls input_dir/  

Step 7 

The following command is used to run the Eleunit_max application by taking the input files from the 

input directory. 

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir 

output_dir  

Wait for a while until the file is executed. After execution, as shown below, the output will contain 

the number of input splits, the number of Map tasks, the number of reducer tasks, etc. 

INFO mapreduce.Job: Job job_1414748220717_0002  

completed successfully  

14/10/31 06:02:52  

INFO mapreduce.Job: Counters: 49  

File System Counters  

  

FILE: Number of bytes read=61  

FILE: Number of bytes written=279400  

FILE: Number of read operations=0  

FILE: Number of large read operations=0    

FILE: Number of write operations=0  

HDFS: Number of bytes read=546  

HDFS: Number of bytes written=40  

HDFS: Number of read operations=9  
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HDFS: Number of large read operations=0  

HDFS: Number of write operations=2 Job Counters  

 

 

   Launched map tasks=2   

   Launched reduce tasks=1  

   Data-local map tasks=2   

   Total time spent by all maps in occupied slots (ms)=146137  

   Total time spent by all reduces in occupied slots (ms)=441    

   Total time spent by all map tasks (ms)=14613  

   Total time spent by all reduce tasks (ms)=44120  

   Total vcore-seconds taken by all map tasks=146137  

    

   Total vcore-seconds taken by all reduce tasks=44120  

   Total megabyte-seconds taken by all map tasks=149644288  

   Total megabyte-seconds taken by all reduce tasks=45178880  

    

Map-Reduce Framework  

  

Map input records=5   

   Map output records=5    

   Map output bytes=45   

   Map output materialized bytes=67   

   Input split bytes=208  

   Combine input records=5   

   Combine output records=5  

   Reduce input groups=5   

   Reduce shuffle bytes=6   

   Reduce input records=5   

   Reduce output records=5   

   Spilled Records=10   

   Shuffled Maps =2   

   Failed Shuffles=0   

   Merged Map outputs=2   

   GC time elapsed (ms)=948   

   CPU time spent (ms)=5160   

   Physical memory (bytes) snapshot=47749120   

   Virtual memory (bytes) snapshot=2899349504   

   Total committed heap usage (bytes)=277684224 

      

File Output Format Counters  

  

   Bytes Written=40  

Step 8 

The following command is used to verify the resultant files in the output folder. 

$HADOOP_HOME/bin/hadoop fs -ls output_dir/  

Step 9 

The following command is used to see the output in Part-00000 file. This file is generated by HDFS. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000  

Below is the output generated by the MapReduce program. 

1981    34  

1984    40  

1985    45  
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Step 10 

The following command is used to copy the output folder from HDFS to the local file system for 

analyzing. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs get output_dir 

/home/Hadoop                                                                                                                                      
    

Important Commands 

All Hadoop commands are invoked by the $HADOOP_HOME/bin/hadoop command. Running the 

Hadoop script without any arguments prints the description for all commands. 

Usage : hadoop [--config confdir] COMMAND 

 

The following table lists the options available and their description. 

Options Description 

namenode -format Formats the DFS filesystem. 

secondarynamenode Runs the DFS secondary namenode. 

namenode Runs the DFS namenode. 

datanode Runs a DFS datanode. 

dfsadmin Runs a DFS admin client. 

mradmin Runs a Map-Reduce admin client. 

fsck Runs a DFS filesystem checking utility. 

fs Runs a generic filesystem user client. 

balancer Runs a cluster balancing utility. 

oiv Applies the offline fsimage viewer to an fsimage. 

fetchdt Fetches a delegation token from the NameNode. 

jobtracker Runs the MapReduce job Tracker node. 

pipes Runs a Pipes job. 

tasktracker Runs a MapReduce task Tracker node. 

historyserver Runs job history servers as a standalone daemon. 

job Manipulates the MapReduce jobs. 

queue Gets information regarding JobQueues. 

version Prints the version. 

jar <jar> Runs a jar file. 

distcp <srcurl> <desturl> Copies file or directories recursively. 

distcp2 <srcurl> <desturl> DistCp version 2. 

archive -archiveName NAME -p Creates a hadoop archive. 

<parent path> <src>* <dest>  
classpath Prints the class path needed to get the Hadoop jar and the 

required libraries. 

daemonlog Get/Set the log level for each daemon 
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4. SETTING UP THE CLUSTER WITH HDFS AND UNDERSTANDING HOW 
MAP- REDUCE WORKS ON HDFS 

 

a. Setting up SSH for a Hadoop cluster 

The first step is to check whether SSH is installed on your nodes. We can easily do this by 

use of the "which" UNIX command: 
 

[hadoop-user@master]$ which ssh  
/usr/bin/ssh 

 
[hadoop-user@master]$ which sshd  
/usr/bin/sshd 

 
[hadoop-user@master]$ which ssh-keygen  
/usr/bin/ssh-keygen 

 
If you instead receive an error message such as this, 

 
/usr/bin/which: no ssh in (/usr/bin:/bin:/usr/sbin... 

 
install OpenSSH (www.openssh.com) via a Linux package manager or by downloading the 

source directly. (Better yet, have your system administrator do it for you.) 

Generate SSH key pair 

Having verified that SSH is correctly installed on all nodes of the cluster, we use ssh-keygen 

on the master node to generate an RSA key pair. Be certain to avoid entering a passphrase, 

or you’ll have to manually enter that phrase every time the master node attempts to access 

another node. 

 
[hadoop-user@master]$ ssh-keygen -t rsa  
Generating public/private rsa key pair.  
Enter file in which to save the key (/home/hadoop-user/.ssh/id_rsa):  
Enter passphrase (empty for no passphrase):  
Enter same passphrase again: 

Your identification has been saved in /home/hadoop-user/.ssh/id_rsa.  
Your public key has been saved in /home/hadoop-user/.ssh/id_rsa.pub. 

 
After creating your key pair, your public key will be of the form 

 
[hadoop-user@master]$ more /home/hadoop-user/.ssh/id_rsa.pub ssh-rsa 

AAAAB3NzaC1yc2EAAAABIwAAAQEA1WS3RG8LrZH4zL2/1oYgkV1OmVclQ2OO5

vRi0Nd51Sy3wWpBVHx82F3x3ddoZQjBK3uvLMaDhXvncJG31JPfU7CTAfmtgINYv0k

dUbDJq4TKG/fuO5q9CqHV71thN2M310gcJ0Y9YCN6grmsiWb2iMcXpy2pqg8UM3ZK

ApyIPx99O1vREWm+4moFTgYwIl5be23ZCyxNjgZFWk5MRlT1p1TxB68jqNbPQtU7fIa

fS7Sasy7h4eyIy7cbLh8x0/V4/mcQsY5dvReitNvFVte6onl8YdmnMpAh6nwCvog3UeWW

JjVZTEBFkTZuV1i9HeYHxpm1wAzcnf7az78jT IRQ== hadoop-user@master 
 

and we next need to distribute this public key across your cluster. 

 

Distribute public key and validate logins 

Albeit a bit tedious, you’ll next need to copy the public key to every slave node as well as 

the master node: 
 

[hadoop-user@master]$ scp ~/.ssh/id_rsa.pub hadoop-user@target:~/master_key 
 

Manually log in to the target node and set the master key as an authorized key (or append to 

the list of authorized keys if you have others defined). 
 

[hadoop-user@target]$ mkdir ~/.ssh  
[hadoop-user@target]$ chmod 700 ~/.ssh  
[hadoop-user@target]$ mv ~/master_key ~/.ssh/authorized_keys  
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[hadoop-user@target]$ chmod 600 ~/.ssh/authorized_keys 
 

After generating the key, you can verify it’s correctly defined by attempting to log in to the 

target node from the master: 
 

[hadoop-user@master]$ ssh target  
The authenticity of host 'target (xxx.xxx.xxx.xxx)' can’t be established.  
RSA key fingerprint is 72:31:d8:1b:11:36:43:52:56:11:77:a4:ec:82:03:1d.  
Are you sure you want to continue connecting (yes/no)? yes  
Warning: Permanently added 'target' (RSA) to the list of known hosts.  
Last login: Sun Jan 4 15:32:22 2009 from master 

 
After confirming the authenticity of a target node to the master node, you won’t be 

prompted upon subsequent login attempts. 
 

[hadoop-user@master]$ ssh target  
Last login: Sun Jan 4 15:32:49 2009 from master 

 
We’ve now set the groundwork for running Hadoop on your own cluster. Let’s discuss the 

different Hadoop modes you might want to use for your projects. 

 
Running Hadoop 

 
We need to configure a few things before running Hadoop. Let’s take a closer look at the 

Hadoop configuration directory: 
 

[hadoop-user@master]$ cd $HADOOP_HOME  
[hadoop-user@master]$ ls -l conf/  
total 100 
-rw-rw-r-- 1 hadoop-user hadoop 2065 Dec 1 10:07 capacity-scheduler.xml 

-rw-rw-r-- 1 hadoop-user hadoop 535 Dec 1 10:07 configuration.xsl 

-rw-rw-r-- 1 hadoop-user hadoop 49456 Dec 1 10:07 hadoop-default.xml 

-rwxrwxr-x 1 hadoop-user hadoop 2314 Jan 8 17:01 hadoop-env.sh 

-rw-rw-r-- 1 hadoop-user hadoop 2234 Jan 2 15:29 hadoop-site.xml 

-rw-rw-r-- 1 hadoop-user hadoop 2815 Dec 1 10:07 log4j.properties 

-rw-rw-r-- 1 hadoop-user hadoop 28 Jan 2 15:29 masters 

-rw-rw-r-- 1 hadoop-user hadoop 84 Jan 2 15:29 slaves 

-rw-rw-r-- 1 hadoop-user hadoop 401 Dec 1 10:07 sslinfo.xml.example 
 
The first thing you need to do is to specify the location of Java on all the nodes including the master. 

In hadoop-env.sh. 

>$export JAVA_HOME=/usr/share/jdk 

b. Operational Modes Of Hadoop 

We have 3 operational modes for running Hadoop are, 

1. Local (standalone) mode 

2. Pseudo-distributed mode 

3. Fully distributed mode 

1. Local (standalone) mode 

 
The standalone mode is the default mode for Hadoop. When you first uncompress 

the Hadoop source package, it’s ignorant of your hardware setup. Hadoop chooses 

to be conservative and assumes a minimal configuration. All three XML files (or 

hadoop-site.xml before version 0.20) are empty under this default mode: 
 

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
 
<!-- Put site-specific property overrides in this file. --> 
 
<configuration> 
 
</configuration> 
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With empty configuration files, Hadoop will run completely on the local machine. 

Because there’s no need to communicate with other nodes, the standalone mode 

doesn’t use HDFS, nor will it launch any of the Hadoop daemons. Its primary use is 

for developing and debugging the application logic of a MapReduce pro-gram 

without the additional complexity of interacting with the daemons.  

2. Pseudo-distributed mode 

 
The pseudo-distributed mode is running Hadoop in a “cluster of one” with all 

daemons running on a single machine. This mode complements the standalone 

mode for debugging your code, allowing you to examine memory usage, HDFS 

input/out-put issues, and other daemon interactions. Listing 2.1 provides simple 

XML files to configure a single server in this mode. 
 
 

Listing 2.1 Example of the three configuration files for pseudo-distributed 

mode 
 

core-site.xml  
<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 
<!-- Put site-specific property overrides in this file. --> 

 
<configuration> 

 
<property>  

<name>fs.default.name</name>  
<value>hdfs://localhost:9000</value>  
<description>The name of the default file system. A 

URI whose scheme and authority determine the 

FileSystem implementation. </description>  
</property> 

 
</configuration> 

 
mapred-site.xml  

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 
<!-- Put site-specific property overrides in this file. --> 

 
<configuration> 

 
<property>  

<name>mapred.job.tracker</name>  
<value>localhost:9001</value>  
<description>The host and port that the MapReduce job 

tracker runs at.</description>  
</property> 

 
</configuration> 

 
hdfs-site.xml  

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 

<!-- Put site-specific property overrides in this file. --> 
 

<configuration> 
 

<property>  
<name>dfs.replication</name>  
<value>1</value>  
<description>The actual number of replications can be specified 

when the file is created.</description>  
</property> 

 
</configuration> 
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In core-site.xml and mapred-site.xml we specify the hostname and port of the 

NameNode and the JobTracker, respectively. In hdfs-site.xml we specify the default 

replication factor for HDFS, which should only be one because we’re running on 

only one node. We must also specify the location of the Secondary NameNode in 

the mas-ters file and the slave nodes in the slaves file: 
 

[hadoop-user@master]$ cat masters  
localhost  
[hadoop-user@master]$ cat slaves  
localhost 

 
While all the daemons are running on the same machine, they still communicate 

with each other using the same SSH protocol as if they were distributed over a 

cluster. For single-node operation simply check to see if your machine already 

allows you to ssh back to itself. 

[hadoop-user@master]$ ssh localhost 
 

If it does, then you’re good. Otherwise setting up takes two lines. 
 

[hadoop-user@master]$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa  
[hadoop-user@master]$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys 

 
You are almost ready to start Hadoop. But first you’ll need to format your HDFS by 

using the command 
 

[hadoop-user@master]$ bin/hadoop namenode -format 
 

We can now launch the daemons by use of the start-all.sh script. The Java jps 

command will list all daemons to verify the setup was successful. 
 

[hadoop-user@master]$ bin/start-all.sh 

[hadoop-user@master]$ jps 

26893 Jps  

26832 TaskTracker  

26620 SecondaryNameNode 

26333 NameNode  

26484 DataNode  

26703 JobTracker  

3. Fully distributed mode 

After continually emphasizing the benefits of distributed storage and distributed 

computation, it’s time for us to set up a full cluster. In the discussion below we’ll 

use the following server names: 
 

■ master—The master node of the cluster and host of the NameNode and Job-

Tracker daemons 
 

■ backup—The server that hosts the Secondary NameNode daemon  
■ hadoop1, hadoop2, hadoop3, ...—The slave boxes of the cluster running both 

DataNode and TaskTracker daemons 
  
 

Listing 2.2 Example configuration files for fully distributed  
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The key differences are 

 
■ We explicitly stated the hostname for location of the NameNode ‘1’ and JobTracker  ‘2’ 

daemons.  
■ We increased the HDFS replication factor to take advantage of distributed  

storage  ‘3’. Recall that data is replicated across HDFS to increase availability and 
reliability. 

 
We also need to update the masters and slaves files to reflect the locations of the other daemons. 

 
[hadoop-user@master]$ cat masters  
backup  
[hadoop-user@master]$ cat slaves  
hadoop1  
hadoop2  
hadoop3  
... 

 
Once you have copied these files across all the nodes in your cluster, be sure to format  
HDFS to prepare it for storage: 

 
[hadoop-user@master]$ bin/hadoop namenode-format 

 
 

Now you can start the Hadoop daemons: 
 

[hadoop-user@master]$ bin/start-all.sh 
 

and verify the nodes are running their assigned jobs. 
 

[hadoop-user@master]$ jps  
30879 JobTracker  
30717 NameNode 

30965 Jps  
[hadoop-user@backup]$ jps  
2099 Jps  
1679 SecondaryNameNode  
[hadoop-user@hadoop1]$ jps  
7101 TaskTracker  
7617 Jps  
6988 DataNode 

 
You have a functioning cluster!  
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5. RUNNING SIMPLE WORD COUNT MAP-REDUCE PROGRAM ON THE CLUSTER 

 

WordCount is a simple application that counts the number of occurrences of each word in a given input set. 

This works with a local-standalone, pseudo-distributed or fully-distributed Hadoop installation 

import java.io.IOException; 

import java.util.StringTokenizer; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

 

public class WordCount  

{ 

 

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> 

   { 

 

    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

 

    public void map(Object key, Text value, Context context) throws IOException, InterruptedException  

    { 

      StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens())  

     { 

        word.set(itr.nextToken()); 

        context.write(word, one); 

      } 

    } 

  } 

 

  public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>  

{ 

    private IntWritable result = new IntWritable(); 

 

    public void reduce(Text key, Iterable<IntWritable> values,Context context ) throws 

IOException, InterruptedException  

 { 

      int sum = 0; 

      for (IntWritable val : values)  

     { 

        sum += val.get(); 

      } 

      result.set(sum); 

      context.write(key, result); 

    } 

  } 

 

  public static void main(String[] args) throws Exception  

{ 

    Configuration conf = new Configuration(); 

    Job job = Job.getInstance(conf, "word count"); 

    job.setJarByClass(WordCount.class); 

    job.setMapperClass(TokenizerMapper.class); 

    job.setCombinerClass(IntSumReducer.class); 
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    job.setReducerClass(IntSumReducer.class); 

    job.setOutputKeyClass(Text.class); 

    job.setOutputValueClass(IntWritable.class); 

    FileInputFormat.addInputPath(job, new Path(args[0])); 

    FileOutputFormat.setOutputPath(job, new Path(args[1])); 

    System.exit(job.waitForCompletion(true) ? 0 : 1); 

 } 

} 

Usage 

Assuming environment variables are set as follows: 

export JAVA_HOME=/usr/java/default 

export PATH=${JAVA_HOME}/bin:${PATH} 

export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar 

Compile WordCount.java and create a jar: 

$ bin/hadoop com.sun.tools.javac.Main WordCount.java 

$ jar cf wc.jar WordCount*.class 

Assuming that: 

 /user/joe/wordcount/input - input directory in HDFS 

 /user/joe/wordcount/output - output directory in HDFS 

Sample text-files as input: 

$ bin/hadoop fs -ls /user/joe/wordcount/input/ /user/joe/wordcount/input/file01 

/user/joe/wordcount/input/file02 

 

$ bin/hadoop fs -cat /user/joe/wordcount/input/file01 

Hello World Bye World 

 

$ bin/hadoop fs -cat /user/joe/wordcount/input/file02 

Hello Hadoop Goodbye Hadoop 

 

Run the application: 

$ bin/hadoop jar wc.jar WordCount /user/joe/wordcount/input /user/joe/wordcount/output 

Output: 

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000` 

Bye 1 

Goodbye 1 

Hadoop 2 

Hello 2 

World 2` 

Walk-through 

The WordCount application is quite straight-forward. 
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public void map(Object key, Text value, Context context 

                ) throws IOException, InterruptedException { 

  StringTokenizer itr = new StringTokenizer(value.toString()); 

  while (itr.hasMoreTokens()) { 

    word.set(itr.nextToken()); 

    context.write(word, one); 

  } 

} 

The Mapper implementation, via the map method, processes one line at a time, as provided by the specified 

TextInputFormat. It then splits the line into tokens separated by whitespaces, via the StringTokenizer, and emits a 

key-value pair of < <word>, 1>. 

For the given sample input the first map emits: 

< Hello, 1> 

< World, 1> 

< Bye, 1> 

< World, 1> 

The second map emits: 

< Hello, 1> 

< Hadoop, 1> 

< Goodbye, 1> 

< Hadoop, 1> 

We’ll learn more about the number of maps spawned for a given job, and how to control them in a fine-grained 

manner, a bit later in the tutorial. 

    job.setCombinerClass(IntSumReducer.class); 

WordCount also specifies a combiner. Hence, the output of each map is passed through the local combiner (which is 

same as the Reducer as per the job configuration) for local aggregation, after being sorted on the *key*s. 

The output of the first map: 

< Bye, 1> 

< Hello, 1> 

< World, 2>` 

The output of the second map: 

< Goodbye, 1> 

< Hadoop, 2> 

< Hello, 1>` 

 

public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, 

InterruptedException  

{ 

  int sum = 0; 

  for (IntWritable val : values) { 

    sum += val.get(); 

  } 

  result.set(sum); 

  context.write(key, result); 

} 

The Reducer implementation, via the reduce method just sums up the values, which are the occurrence counts for 

each key (i.e. words in this example). 

Thus the output of the job is: 
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< Bye, 1> 

< Goodbye, 1> 

< Hadoop, 2> 

< Hello, 2> 

< World, 2>` 

The main method specifies various facets of the job, such as the input/output paths (passed via the command line), 

key/value types, input/output formats etc., in the Job. It then calls the job.waitForCompletion to submit the job and 

monitor its progress. 

6. ADDITIONAL EXAMPLES OF M-R PROGRAMMING. 

Problem statement: I run a highly busy website and need to pull down my site for an hour in order to apply some 

patches and maintenance of backend severs, which means the website will be completely unavailable for an hour. 

To perform this activity the primary lookout will be that shutdown outage should be affected to least number of 

users. The games starts here: We need to identify at what hour of the day the web traffic is least for the website so 

that maintenance activity can be scheduled for that time. 

There is an Apache web server log for each day which records the activities happening on website. But those are 

huge files up to 5 GB each. 

Excerpt from Log file: 

64.242.88.10 – – [07/Mar/2014:22:12:28 -0800] “GET /twiki/bin/attach/TWiki/WebSearch HTTP/1.1” 401 12846 

64.242.88.10 – – [07/Mar/2014:22:15:57 -0800] “GET /mailman/listinfo/hs_rcafaculty HTTP/1.1” 200 6345 

We are interested only in the date field i.e. [07/Mar/2014:22:12:28 -0800] 

Solution: I need to consume log files of one month and run my MapReduce code which calculates the total number 

of hits for each hour of the day. Hour which has the least number of hits is perfect for the downtime. It is as simple 

as that! 

A MapReduce program usually consists of the following 3 parts: 

1. Mapper 

2. Reducer 

3. Driver  

As the name itself states Map and Reduce, the code is divided basically into two phases one is Map and second is 

Reduce. Both phase has an input and output as key-value pairs. Programmer has been given the liberty to choose the 

data model for the input and output for Map and Reduce both. Depending upon the business problem we need to use 

the appropriate data model. 

What Mappers does? 

 The Map function reads the input files as key/value pairs, processes each, and generates zero or 

more output key/value pairs. 

 The Map class extends Mapper class which is a subclass of org.apache.hadoop.mapreduce. 

 java.lang.Object : org.apache.hadoop.mapreduce.Mapper 

 The input and output types of the map can be (and often are) different from each other. 

 If the application is doing a word count, the map function would break the line into words and 

output a key/value pair for each word. Each output pair would contain the word as the key and 

the number of instances of that word in the line as the value. 

 The Map function is also a good place to filter any unwanted fields/ data from input file, we 

take the data only we are interested to remove unnecessary workload. 

I have used Hadoop 1.2.1 API, Java 1.7 to write this program. 
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package com.balajitk.loganalyzer; 

  

import java.io.IOException; 

import java.text.ParseException; 

import java.util.regex.Matcher; 

import java.util.regex.Pattern; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Mapper; 
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import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

import com.balajitk.loganalyzer.ParseLog; 

  

public class LogMapper extends 

     Mapper&lt;LongWritable, Text, IntWritable, IntWritable&gt; { 

  

    private static Logger logger = LoggerFactory.getLogger(LogMapper.class); 

    private IntWritable hour = new IntWritable(); 

    private final static IntWritable one = new IntWritable(1); 

    private static Pattern logPattern = Pattern 

         .compile("([^ ]*) ([^ ]*) ([^ ]*) \\[([^]]*)\\]" 

                 + " \"([^\"]*)\"" 

                 + " ([^ ]*) ([^ ]*).*"); 

  

    public void map(LongWritable key, Text value, Context context) 

         throws InterruptedException, IOException { 

     logger.info("Mapper started"); 

     String line = ((Text) value).toString(); 

     Matcher matcher = logPattern.matcher(line); 

     if (matcher.matches()) { 

         String timestamp = matcher.group(4); 

         try { 

             hour.set(ParseLog.getHour(timestamp)); 

         } catch (ParseException e) { 

             logger.warn("Exception", e); 

         } 

         context.write(hour, one); 

     } 

     logger.info("Mapper Completed"); 

    } 

} 

The Mapper code which is written above is written for processing single record from programmer’s point 

of view. We will never write logic in MapReduce to deal with entire data set. The framework is 

responsible to convert the code to process entire data set by converting into desired key value pair. 

The Mapper class has four parameters that specifies the input key, input value, output key, and output 

values of the Map function. 

1 Mapper<LongWritable, Text, IntWritable, IntWritable> 

1 Mapper<Input key, Input value, Output key, and Output values> 

1 Mapper<Offset of the input file, Single Line of the file, Hour of the day, Integer One> 

Hadoop provides its own set of basic types that are optimized for network serialization which can be found 

in the org.apache.hadoop.io package. 

In my program I have used LongWritable, which corresponds to a Java Long, Text (like Java String), and 

IntWritable (like Java Integer). Mapper write their output using instance of Context class which is used to 

communicate in Hadoop. 

What Reducer does? 

1. The Reducer code reads the outputs generated by the different mappers as pairs and 

emits key value pairs. 

2. Reducer reduces a set of intermediate values which share a key to a smaller set of values. 

3. java.lang.Object : org.apache.hadoop.mapreduce.Reducer 

4. Reducer has 3 primary phases: shuffle, sort and reduce. 

5. Each reduce function processes the intermediate values for a particular key generated by the map 

function. There exists a one-one mapping between keys and reducers. 

6. Multiple reducers run in parallel, as they are independent of one another. The number of reducers 

for a job is decided by the programmer. By default, the number of reducers is 1. 

7. The output of the reduce task is typically written to the FileSystem via 

OutputCollector.collect(WritableComparable, Writable) 

1 

2 

3 

package com.balajitk.loganalyzer; 

  

import java.io.IOException; 
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import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

  

public class LogReducer extends 

     Reducer&lt;IntWritable, IntWritable, IntWritable, IntWritable&gt; { 

  

    private static Logger logger = LoggerFactory.getLogger(LogReducer.class); 

  

    public void reduce(IntWritable key, Iterable&lt;IntWritable&gt; values, 

         Context context) throws IOException, InterruptedException { 

  

     logger.info("Reducer started"); 

     int sum = 0; 

     for (IntWritable value : values) { 

         sum = sum + value.get(); 

     } 

     context.write(key, new IntWritable(sum)); 

     logger.info("Reducer completed"); 

  

    } 

} 

Four parameters are used in Reducers to specify input and output, which define the types of the input and 

output key/value pairs. Output of the map task will be input to reduce task. First two parameter are the 

input key value pair from map task. In our example IntWritable, IntWritable 

1 Reducer<IntWritable, IntWritable, IntWritable, IntWritable> 

1 Reducer<Input key, Input value, Output key, and Output values> 

1 Reducer<Hour of the day, List of counts, Hour, Total Count for the Hour>; 

What Driver does? 

Driver class is responsible to execute the MapReduce framework. Job object allows you to configure the 

Mapper, Reducer, InputFormat, OutputFormat etc. 
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package com.balajitk.loganalyzer; 

  

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

  

public class LogDriver { 

  

    private static Logger logger = LoggerFactory.getLogger(LogDriver.class); 

  

    public static void main(String[] args) throws Exception {         

     logger.info("Code started"); 

  

     Job job = new Job(); 

     job.setJarByClass(LogDriver.class); 

     job.setJobName("Log Analyzer"); 

  

     job.setMapperClass(LogMapper.class); 

     job.setReducerClass(LogReducer.class); 

  

     job.setOutputKeyClass(IntWritable.class); 

     job.setOutputValueClass(IntWritable.class); 

  

     FileInputFormat.addInputPath(job, new Path(args[0])); 

     FileOutputFormat.setOutputPath(job, new Path(args[1])); 
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     job.waitForCompletion(true); 

     logger.info("Code ended"); 

    } 

  

} 

Job control is performed through the Job class in the new API, rather than the old 

JobClient, which no longer exists in the new API. 

Output: 
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Unit-4: Anatomy of Map-Reduce Jobs: 

1. Understanding how Map- Reduce program works 

2. Tuning Map-Reduce jobs 

3. Understanding different logs produced by Map-Reduce jobs and  

4. Debugging the Map- Reduce jobs. 

 

 

 In releases of Hadoop up to and including the 0.20 release series, mapred.job.tracker determines the 

means of execution. 

 In Hadoop 0.23.0 a new MapReduce implementation was introduced. The new implementation (called 

MapReduce 2) is built on a system called YARN, described in “YARN (MapReduce 2)”.  

 For now, the framework that is used for execution is set by the mapreduce.framework.name property, 

which takes the values local (for the local job runner), classic (for the “classic” MapReduce framework, 

also called MapReduce 1, which uses a jobtracker and tasktrackers), and yarn (for the new framework). 

 

1. Classic MapReduce (MapReduce 1) 

A job run in classic MapReduce is illustrated in Figure 5-1. At the highest level, there are four independent 

entities: 

 The client, which submits the MapReduce job. 

 The jobtracker, which coordinates the job run. The jobtracker is a Java application whose main class   is 

JobTracker. 

 The tasktrackers, which run the tasks that the job has been split into. Tasktrackers are Java applications 

whose main class is TaskTracker. 

 The distributed filesystem (normally HDFS), which is used for sharing job files between the other 

entities. 

 
Figure 5-1. How Hadoop runs a MapReduce job using the classic framework 

 

1. Understanding how Map-Reduce program works 

G B Gangadhar
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Job Submission 

The submit() method on Job creates an internal JobSummitter instance and calls submitJobInternal() on it 

(step1 in Figure 5-1). Having submitted the job, waitForCompletion() polls the job’s progress once a 

second and reports the progress to the console if it has changed since the last report. When the job is 

complete, if it was successful, the job counters are displayed. Otherwise, the error that caused the job to 

fail is logged to the console. 

The job submission process implemented by JobSummitter does the following: 

 Asks the jobtracker for a new job ID (by calling getNewJobId() on JobTracker) (step 2). 

 Checks the output specification of the job. For example, if the output directory has not been specified 

or it already exists, the job is not submitted and an error is thrown to the MapReduce program. 

 Computes the input splits for the job. If the splits cannot be computed, because the input paths don’t 

exist, for example, then the job is not submitted and an error is thrown to the MapReduce program. 

 Copies the resources needed to run the job, including the job JAR file, the configuration file, and the 

computed input splits, to the jobtracker’s filesystem in a directory named after the job ID. The job JAR 

is copied with a high replication factor (controlled by the mapred.submit.replication property, which 

defaults to 10) so that there are lots of copies across the cluster for the tasktrackers to access when they 

run tasks for the job (step 3). 

 Tells the jobtracker that the job is ready for execution (by calling submitJob() on JobTracker) 

(step4). 

Job Initialization 

- When the JobTracker receives a call to its submitJob() method, it puts it into an internal queue from 

where the job scheduler will pick it up and initialize it. Initialization involves creating an object to 

represent the job being run, which encapsulates its tasks, and bookkeeping information to keep track of 

the tasks’ status and progress (step 5). 

- To create the list of tasks to run, the job scheduler first retrieves the input splits computed by the client 

from the shared filesystem (step 6).  

- It then creates one map task for each split. The number of reduce tasks to create is determined by the 

mapred.reduce.tasks property in the Job, which is set by the setNumReduceTasks() method, and the 

scheduler simply creates this number of reduce tasks to be run. Tasks are given IDs at this point. 

- In addition to the map and reduce tasks, two further tasks are created: a job setup task and a job 

cleanup task. These are run by tasktrackers and are used to run code to setup the job before any map 

tasks run, and to cleanup after all the reduce tasks are complete. 

- The OutputCommitter that is configured for the job determines the code to be run, and by default this is 

a FileOutputCommitter. For the job setup task it will create the final output directory for the job and the 

temporary working space for the task output, and for the job cleanup task it will delete the temporary 

working space for the task output. 

Task Assignment 

- Tasktrackers run a simple loop that periodically sends heartbeat method calls to the jobtracker. 

Heartbeats tell the jobtracker that a tasktracker is alive, but they also double as a channel for messages.  

- As a part of the heartbeat, a tasktracker will indicate whether it is ready to run a new task, and if it is, 

the jobtracker will allocate it a task, which it communicates to the tasktracker using the heartbeat return 

value (step 7). 

- Before it can choose a task for the tasktracker, the jobtracker must choose a job to select the task from. 

Job Scheduler simply maintains a priority list of jobs. Having chosen a job, the jobtracker now chooses 

a task for the job. 

- Tasktrackers have a fixed number of slots for map tasks and for reduce tasks: for example, a 

tasktracker may be able to run two map tasks and two reduce tasks simultaneously. 

- (The precise number depends on the number of cores and the amount of memory on the tasktracker; 

The default scheduler fills empty map task slots before reduce task slots, so if the tasktracker has at 

least one empty map task slot, the jobtracker will select a map task; otherwise, it will select a reduce 

task. 
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- To choose a reduce task, the jobtracker simply takes the next in its list of yet-to-be-run reduce tasks, 

since there are no data locality considerations.  

- For a map task, however, it takes account of the tasktracker’s network location and picks a task whose 

input split is as close as possible to the tasktracker.  

- In the optimal case, the task is data-local, that is, running on the same node that the split resides on. 

Alternatively, the task may be rack-local: on the same rack, but not the same node, as the split. Some 

tasks are neither data-local nor rack-local and retrieve their data from a different rack from the one they 

are running on. You can tell the proportion of each type of task by looking at a job’s counters 

Task Execution 

- Now that the tasktracker has been assigned a task, the next step is for it to run the task.  

- First, it localizes the job JAR by copying it from the shared filesystem to the tasktracker’s filesystem. It 

also copies any files needed from the distributed cache by the application to the local disk; (step 8).  

- Second, it creates a local working directory for the task, and un-jars the contents of the JAR into this 

directory.  

- Third, it creates an instance of TaskRunner to run the task.  

- TaskRunner launches a new Java Virtual Machine (step 9) to run each task in (step 10), so that any 

bugs in the user-defined map and reduce functions don’t affect the tasktracker (by causing it to crash or 

hang, for example).  

- The child process communicates with its parent through the umbilical interface. This way it informs the 

parent of the task’s progress every few seconds until the task is complete. 

- Each task can perform setup and cleanup actions, which are run in the same JVM as the task itself, and 

are determined by the OutputCommitter for the job.  

- The cleanup action is used to commit the task, which in the case of file-based jobs means that its output 

is written to the final location for that task.  

- The commit protocol ensures that when speculative execution is enabled, only one of the duplicate 

tasks is committed and the other is aborted. 

Streaming and Pipes 

  
Figure 5-2. The relationship of the Streaming and Pipes executable to the tasktracker and its child 
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- Both Streaming and Pipes run special map and reduce tasks for the purpose of launching the user-

supplied executable and communicating with it (Figure 5-2). 

- In the case of Streaming, the Streaming task communicates with the process (which may be written in 

any language) using standard input and output streams.  

- The Pipes task, on the other hand, listens on a socket and passes the C++ process a port number in its 

environment, so that on startup, the C++ process can establish a persistent socket connection back to 

the parent Java Pipes task. 

Progress and Status Updates 

- MapReduce jobs are long-running batch jobs, taking anything from minutes to hours to run. 

- A job and each of its tasks have a status, which includes such things as the state of the job or task (e.g., 

running, successfully completed, failed), the progress of maps and reduces, the values of the job’s 

counters, and a status message or description (which may be set by user code).  

- These statuses change over the course of the job, so how do they get communicated back to the client? 

- When a task is running, it keeps track of its progress, that is, the proportion of the task completed. 

- If a task reports progress, it sets a flag to indicate that the status change should be sent to the 

tasktracker.  

- The flag is checked in a separate thread every three seconds, and if set it notifies the tasktracker of the 

current task status. Meanwhile, the tasktracker is sending heartbeats to the jobtracker longer), and the 

status of all the tasks being run by the tasktracker is sent in the call. 

- The jobtracker combines these updates to produce a global view of the status of all the jobs being run 

and their constituent tasks.  

- Finally, as mentioned earlier, the Job receives the latest status by polling the jobtracker every second. 

Clients can also use Job’s getStatus() method to obtain a JobStatus instance, which contains all of the 

status information for the job. 

- The method calls are illustrated in Figure 5-3 

 
Figure 5-3. How status updates are propagated through the MapReduce 1 system 

 

Job Completion 

- When the jobtracker receives a notification that the last task for a job is complete, it changes the status 

for the job to “successful.” 
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- Then, when the Job polls for status, it learns that the job has completed successfully, so it prints a 

message to tell the user and then returns from the waitForCompletion() method. 

- The jobtracker also sends an HTTP job notification if it is configured to do so. This can be configured 

by clients wishing to receive callbacks, via the job.end.notification.url property. 

- Last, the jobtracker cleans up its working state for the job and instructs tasktrackers to do the same 

 

2. YARN (MapReduce 2) 

For very large clusters in the region of 4000 nodes and higher, the MapReduce system described in the 

previous section begins to hit scalability bottlenecks, so in 2010 a group at Yahoo! began to design the next 

generation of MapReduce. The result was YARN, short for Yet Another Resource Negotiator (or if you prefer 

recursive ancronyms, YARN Application Resource Negotiator). 

 

Figure 5-4. How Hadoop runs a MapReduce job using YARN 

You can run a MapReduce job with a single method call: submit() on a Job object (you can also call 

waitForCompletion(), which submits the job if it hasn’t been submitted already, then waits for it to finish). 

This method call conceals a great deal of processing behind the scenes.  

The whole process is illustrated in Figure 5-4.  

At the highest level, there are five independent entities 

1. The client, which submits the MapReduce job. 

2. The YARN resource manager, which coordinates the allocation of compute resources on the cluster. 

3. The YARN node managers, which launch and monitor the compute containers on machines in the 

cluster. 

4. The MapReduce application master, which coordinates the tasks running the MapReduce job. The 

application master and the MapReduce tasks run in containers that are scheduled by the resource 

manager and managed by the node managers. 

5. The distributed filesystem (normally HDFS), which is used for sharing job files between the other 

entities. 
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Job Submission 

The submit() method on Job creates an internal JobSubmitter instance and calls submitJobInternal() on 

it (step 1 in Figure 5-4). Having submitted the job, waitForCompletion() polls the job’s progress once 

per second and reports the progress to the console if it has changed since the last report.  

When the job completes successfully, the job counters are displayed. Otherwise, the error that caused 

the job to fail is logged to the console. 

The job submission process implemented by JobSubmitter does the following: 

- Asks the resource manager for a new application ID, used for the MapReduce job ID (step 2). 

- Checks the output specification of the job. For example, if the output directory has not been 

specified or it already exists, the job is not submitted and an error is thrown to the MapReduce 

program. 

- Computes the input splits for the job. If the splits cannot be computed (because the input paths 

don’t exist, for example), the job is not submitted and an error is thrown to the MapReduce 

program. 

- Copies the resources needed to run the job, including the job JAR file, the configuration file, 

and the computed input splits, to the shared filesystem in a directory named after the job ID 

(step 3).  

- The job JAR is copied with a high replication factor (controlled by the 

mapreduce.client.submit.file.replication property, which defaults to 10) so that there are lots of 

copies across the cluster for the node managers to access when they run tasks for the job. 

- Submits the job by calling submitApplication() on the resource manager (step 4). 

Job Initialization 

- When the resource manager receives a call to its submitApplication() method, it hands off the request 

to the YARN scheduler. The scheduler allocates a container, and the resource manager then launches 

the application master’s process there, under the node manager’s management (steps 5a and 5b). 

- The application master for MapReduce jobs is a Java application whose main class is MRAppMaster. It 

initializes the job by creating a number of bookkeeping objects to keep track of the job’s progress, as it 

will receive progress and completion reports from the tasks (step 6).  

- Next, it retrieves the input splits computed in the client from the shared filesystem (step 7). It then 

creates a map task object for each split, as well as a number of reduce task objects determined by the 

mapreduce.job.reduces property (set by the setNumReduceTasks() method on Job). Tasks are given 

IDs at this point. 

- The application master decides if the job is small, the application master may choose to run the tasks in 

the same JVM as itself. This happens when it judges that the overhead of allocating and running tasks 

in new containers outweighs the gain to be had in running them in parallel, compared to running them 

sequentially on one node. Such a job is said to be uberized, or run as an uber task. 

- What qualifies as a small job? By default, a small job is one that has less than 10 mappers, only one 

reducer, and an input size that is less than the size of one HDFS block. 

 

- Finally, before any tasks can be run, the application master calls the setupJob() method on the 

OutputCommitter. For FileOutputCommitter, which is the default, it will create the final output 

directory for the job and the temporary working space for the task output.  

Task Assignment 

- If the job does not qualify for running as an uber task, then the application master requests containers 

for all the map and reduce tasks in the job from the resource manager (step 8).  

- Requests for map tasks are made first and with a higher priority than those for reduce tasks, since all 

the map tasks must complete before the sort phase of the reduce can start.  

- Requests for reduce tasks are not made until 5% of map tasks have completed. 

- Reduce tasks can run anywhere in the cluster, but requests for map tasks have data locality constraints 

that the scheduler tries to honor.  In the optimal case, the task is data local—that is, running on the 

same node that the split resides on. Alternatively, the task may be rack local: on the same rack, but not 
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the same node, as the split. Some tasks are neither data local nor rack local and retrieve their data from 

a different rack than the one they are running on. For a particular job run, you can determine the 

number of tasks that ran at each locality level by looking at the job’s counters. 

- Requests also specify memory requirements and CPUs for tasks. By default, each map and reduce task 

is allocated 1,024 MB of memory and one virtual core. The values are configurable on a per-job basis 

via the following properties: mapreduce.map.memory.mb, mapreduce.reduce.memory.mb, 

mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores. 

Task Execution 

- Once a task has been assigned resources for a container on a particular node by the resource manager’s 

scheduler, the application master starts the container by contacting the node manager (steps 9a and 9b).  

- The task is executed by a Java application whose main class is YarnChild. Before it can run the task, it 

localizes the resources that the task needs, including the job configuration and JAR file, and any files 

from the distributed cache (step 10).  

- Finally, it runs the map or reduce task (step 11). 

- The YarnChild runs in a dedicated JVM, so that any bugs in the user-defined map and reduce functions 

(or even in YarnChild) don’t affect the node manager—by causing it to crash or hang, for example. 

- Each task can perform setup and commit actions, which are run in the same JVM as the task itself and 

are determined by the OutputCommitter for the job. 

- For file-based jobs, the commit action moves the task output from a temporary location to its final 

location. The commit protocol ensures that when speculative execution is enabled, only one of the 

duplicate tasks is committed and the other is aborted. 

Streaming 

Streaming runs special map and reduce 

tasks for the purpose of launching the 

usersupplied executable and 

communicating with it (Figure 5-5). 

The Streaming task communicates with 

the process (which may be written in any 

language) using standard input and output 

streams. During execution of the task, the 

Java process passes input key-value pairs 

to the external process, which runs it 

through the user-defined map or reduce 

function and passes the output key-value 

pairs back to the Java process. From the 

node manager’s point of view, it is as if 

the child process ran the map or reduce 

code itself. 

 
Figure 5-5. The relationship of the Streaming 

executable to the node manager and the task 

container 
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Progress and Status Updates 

A job and each of its tasks have a status, which includes such things as the state of the job or 

task (e.g., running, successfully completed, failed), the progress of maps and reduces, the values of the 

job’s counters, and a status message or description (which may be set by user code).  

These statuses change over the course of the job, so how do they get communicated back to 

the client? When a task is running, it keeps track of its progress (i.e., the proportion of the task 

completed). For map tasks, this is the proportion of the input that has been processed. For reduce tasks 

the proportion of the reduce input processed.  

 
Figure 5-6. How status updates are propagated through the MapReduce system 

 

Tasks also have a set of counters that count various events as the task runs, which are either 

built into the framework, such as the number of map output records written, or defined by users. As the 

map or reduce task runs, the child process communicates with its parent application master through the 

umbilical interface. The task reports its progress and status (including counters) back to its application 

master, which has an aggregate view of the job, every three seconds over the umbilical interface. 

The resource manager web UI displays all the running applications with links to the web UIs 

of their respective application masters, each of which displays further details on the MapReduce job, 

including its progress. 

During the course of the job, the client receives the latest status by polling the application 

master every second (the interval is set via mapreduce.client.progressmonitor.pol linterval). Clients can 

also use Job’s getStatus() method to obtain a JobStatus instance, which contains all of the status 

information for the job. 

The process is illustrated in Figure 5-6. 

Job Completion 

When the application master receives a notification that the last task for a job is complete, it 

changes the status for the job to “successful.” Then, when the Job polls for status, it learns that the job 

has completed successfully, so it prints a message to tell the user and then returns from the 

waitForCompletion() method. Job statistics and counters are printed to the console at this point. 
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2.  Tuning Map-Reduce jobs 

 

The application master also sends an HTTP job notification if it is configured to do so. This 

can be configured by clients wishing to receive callbacks, via the mapreduce.job.end-notification.url 

property. 

Finally, on job completion, the application master and the task containers clean up their 

working state (so intermediate output is deleted), and the OutputCommitter’s commitJob() method is 

called. Job information is archived by the job history server to enable later interrogation by users if 

desired. 

 

 

After a job is working, the question many developers ask is, “Can I make it run faster?” There are a few 

Hadoop-specific “usual suspects” that are worth checking to see whether they are responsible for a performance 

problem. You should run through the checklist in Table-1 before you start trying to profile or optimize at the 

task level. 

 

Table-1 Tuning checklist 

Profiling Tasks 

Hadoop allows you to profile a fraction of the tasks in a job and, as each task completes, pulls 

down the profile information to your machine for later analysis with standard profiling tools. 

Of course, it’s possible, and somewhat easier, to profile a job running in the local job runner. 

And provided you can run with enough input data to exercise the map and reduce tasks, this can be a 

valuable way of improving the performance of your mappers and reducers. There are a couple of 

caveats, however. The local job runner is a very different environment from a cluster, and the data flow 

patterns are very different. Optimizing the CPU performance of your code may be pointless if your 

MapReduce job is I/O-bound (as many jobs are). To be sure that any tuning is effective, you should 

compare the new execution time with the old one running on a real cluster. Even this is easier said than 

done, since job execution times can vary due to resource contention with other jobs and the decisions 

the scheduler makes regarding task placement. To get a good idea of job execution time under these 

circumstances, perform a series of runs (with and without the change) and check whether any 

improvement is statistically significant. 

 



INTRODUCTION TO BIG-DATA: Map-Reduce Jobs  Unit-4 

 

 10 

The HPROF profiler 

There are a number of configuration properties to control profiling, which are also exposed via convenience 

methods on JobConf. Enabling profiling is as simple as setting the property mapreduce.task.profile to true: 

>% hadoop jar hadoop-examples.jar v4.MaxTemperatureDriver \ -conf conf/hadoop-cluster.xml \ -D 

mapreduce.task.profile=true \ input/ncdc/all max-temp 

This runs the job as normal, but adds an -agentlib parameter to the Java command used to launch the 

task containers on the node managers. You can control the precise parameter that is added by setting the 

mapreduce.task.profile.params property. The default uses HPROF, a profiling tool that comes with the JDK that,  

The profile output for each task is saved with the task logs in the userlogs subdirectory of the node 

manager’s local log directory (alongside the syslog, stdout, and stderr files), and can be retrieved in the way 

described in “Hadoop Logs”, according to whether log aggregation is enabled or not. 

 

 

Hadoop produces logs in various places, and for various audiences. These are summarized in Table-2. 

 

 
Table-2. Types of Hadoop logs 

MapReduce log levels 

MapReduce logs support various levels. You can configure the log levels for the MapReduce service 

and tasks. 

You can set log levels to any of the following values: 

Level Description 

DEBUG Logs all debug-level and informational messages. 

INFO Logs all informational messages and more serious messages. This is the default log level. 

WARN 
Logs only those messages that are warnings or more serious messages. This is the default level 

of debug information. 

ERROR Logs only those messages that indicate error conditions or more serious messages. 

FATAL Logs only those messages in which the system is unusable. 

To modify the level of the log printed to the console, change the value of the log4j.rootLogger 

property in the log configuration file 

 

3. Understanding different logs produced by Map-Reduce 
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System logfiles 

System logfiles produced by Hadoop are stored in $HADOOP_INSTALL/logs by default. This can be 

changed in hadoop-env.sh. 

Each Hadoop daemon running on a machine produces two logfiles.  

The first is the log output written via log4j. This file, which ends in .log. Old logfiles are never deleted, 

so you should arrange for them to be periodically deleted or archived, so as to not run out of disk space 

on the local node. 

The second logfile is the combined standard output and standard error log. This logfile, which ends in 

.out, usually contains little or no output, since Hadoop uses log4j for logging. It is only rotated when 

the daemon is restarted, and only the last five logs are retained. Old logfiles are suffixed with a number 

between 1 and 5, with 5 being the oldest file. 

Audit Logging 

HDFS has the ability to log all filesystem access requests, a feature that some organizations require for 

auditing purposes. Audit logging is implemented using log4j logging at the INFO level, and in the 

default configuration it is disabled.You can enable audit logging by replacing WARN with INFO, and 

the result will be a log line written to the namenode’s log for every HDFS event.  

It is a good idea to configure log4j so that the audit log is written to a separate file and isn’t mixed up 

with the namenode’s other log entries. 

Job History Logging 

Job history refers to the events and configuration for a completed job. It is retained whether the job was 

successful or not, in an attempt to provide interesting information for the user running a job. 

Job history files are stored on the local filesystem of the jobtracker in a history subdirectory of the logs 

directory.  

The jobtracker’s history files are kept for 30 days before being deleted by the system. 

The history log includes job, task, and attempt events, all of which are stored in a plaintext file. The 

history for a particular job may be viewed through the web UI, or via the command line, using hadoop 

job -history (which you point at the job’s output directory). 

MapReduce task logs  

 

These are accessible throughthe web UI, which is the most convenient way to view them. You 

can also find the logfiles on the local filesystem of the tasktracker that ran the task attempt, in a 

directory named by the task attempt. If task JVM reuse is enabled, then each task attempts will be 

found in each logfile. It is straightforward to write to these logfiles. Anything written to standard 

output, or standard error, is directed to the relevant logfile.  

The default log level is INFO, so DEBUG level messages do not appear in the syslog task log 

file. However, sometimes you want to see these messages—to do this set mapred.map.child.log.level or 

mapred.reduce.child.log.level, as appropriate (from 0.22). For example, in this case we could set it for 

the mapper to see the map values in the log as follows: 

>% hadoop jar hadoop-examples.jar LoggingDriver -conf conf/hadoop-cluster.xml \-D 

mapred.map.child.log.level=DEBUG input/ncdc/sample.txt logging-out 

There are some controls for managing retention and size of task logs. By default, logs are deleted after 

a minimum of 24 hours (set using the mapred.userlog.retain.hoursproperty). You can also set a cap on 

the maximum size of each logfile using the mapred.userlog.limit.kb property, which is 0 by default, 

meaning there is no cap. 
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The time-honored way of debugging programs is via print statements, and this is certainly possible in 

Hadoop. However, there are complications to consider: with programs running on tens, hundreds, or thousands 

of nodes, how do we find and examine the output of the debug statements, which may be scattered across these 

nodes?  

For this particular case, where we are looking for (what we think is) an unusual case, we can use a 

debug statement to log to standard error, in conjunction with a message to update the task’s status message to 

prompt us to look in the error log. The web UI makes this easy, as we will see. 

We also create a custom counter to count the total number of records with implausible temperatures in 

the whole dataset. This gives us valuable information about how to deal with the condition—if it turns out to be 

a common occurrence, then we might need to learn more about the condition and how to extract the temperature 

in these cases, rather than simply dropping the record. In fact, when trying to debug a job, you should always 

ask yourself if you can use a counter to get the information you need to find out what’s happening. Even if you 

need to use logging or a status message, it may be useful to use a counter to gauge the extent of the problem.  

If the amount of log data you produce in the course of debugging is large, then you’ve got a couple of 

options. The first is to write the information to the map’s output, rather than to standard error, for analysis and 

aggregation by the reduce. This approach usually necessitates structural changes to your program, so start with 

the other techniques 

You can write a program (in MapReduce of course) to analyze the logs produced by your job. We add 

our debugging to the mapper, as opposed to the reducer, as we want to find out what the source data causing the 

anomalous output looks like: 

 

If the temperature is over 100°C (represented by 1000, since temperatures are in tenths of a degree),  

- we print a line to standard error with the suspect line, as well as updating the map’s status message 
using the setStatus() method on Context directing us to look in the log. We also increment a counter, 

which in Java is represented by a field of an enum type. In this program, we have defined a single field 

OVER_100 as a way to count the number of records with a temperature of over 100°C. 

With this modification, we recompile the code, re-create the JAR file, then rerun the job, and while it’s running 

go to the tasks page. The tasks page The job page has a number of links for look at the tasks in a job in more 

detail. For example, by clicking on the “map” link, you are brought to a page that lists information for all of the 

4. Debugging the Map- Reduce jobs. 
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map tasks on one page. You can also see just the completed tasks. The screenshot in Figure 5-7 shows a portion 

of this page for the job run with our debugging statements.  

Each row in the table is a task, and it provides such information as the start and end times for each task, any 

errors reported back from the tasktracker, and a link to view the counters for an individual task. 

The “Status” column can be helpful for debugging, since it shows a task’s latest status message. Before a task 

starts, it shows its status as “initializing,” then once it starts reading records it shows the split information for the 

split it is reading as a filename with a byte offset and length. You can see the status we set for debugging for 

task task_200904110811_0003_m_000044, so let’s click through to the logs page to find the associated debug 
message. (Notice, too, that there is an extra counter for this task, since our user counter has a nonzero count for 

this task.) 

The task details page From the tasks page, you can click on any task to get more information about it. The task 

details page, shown in Figure 5-8, shows each task attempt. In this case, there was one task attempt, which 

completed successfully. The table provides further useful data, such as the node the task attempt ran on, and 

links to task logfiles and counters. 

The “Actions” column contains links for killing a task attempt. By default, this is disabled, making the web UI a 

read-only interface. Set webinterface.private.actions to true to enable the actions links. 

 

Figure 5-7. Screenshot of the tasks page 

 

 

Figure 5-8. Screenshot of the task details page 

 

For map tasks, there is also a section showing which nodes the input split was located on. By following 

one of the links to the logfiles for the successful task attempt (you can see the last 4 KB or 8 KB of each logfile, 
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or the entire file), we can find the suspect input record that we logged (the line is wrapped and truncated to fit on 

the page): 

Temperature over 100 degrees for input: 

0335999999433181957042302005+37950+139117SAO+0004RJSNV020113590031500703569999994332019

57010100005+35317+139650SAO +000899999V02002359002650076249N004000599+0067... 

This record seems to be in a different format to the others. For one thing, there are spaces in the line, which are 

not described in the specification. 

When the job has finished, we can look at the value of the counter we defined to see how many records over 

100°C there are in the whole dataset. Counters are accessible via the web UI or the command line: 

>% hadoop job -counter job_200904110811_0003 'v4.MaxTemperatureMapper$Temperature' 

\OVER_100 

3 

The -counter option takes the job ID, counter group name (which is the fully qualified classname here), and the 

counter name (the enum name). There are only three malformed records in the entire dataset of over a billion 

records.  

Throwing out bad records is standard for many big data problems, although we need to be careful in this case, 

since we are looking for an extreme value—the maximum temperature rather than an aggregate measure. Still, 

throwing away three records is probably not going to change the result. 
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Unit-5:  

Case studies of Big Data analytics using Map-Reduce programming 

1. K-Means clustering 

2. using Big Data analytics libraries using Mahout. 

 

 

What is Big Data Analytics? 

Big data analytics is the use of advanced analytic techniques against very large, diverse data sets 

that include different types such as structured/unstructured and streaming/batch and different sizes from 

terabytes to zettabytes. Big data is a term applied to data sets whose size or type is beyond the ability of 

traditional relational databases to capture, manage, and process the data with low-latency. And it has one 

or more of the following characteristics – high volume, high velocity, or high variety. Big data comes 

from sensors, devices, video/audio, networks, log files, transactional applications, web, and social media - 

much of it generated in real time and in a very large scale.  

Analyzing big data allows analysts, researchers, and business users to make better and faster 

decisions using data that was previously inaccessible or unusable. Using advanced analytics techniques 

such as text analytics, machine learning, predictive analytics, data mining, statistics, and natural language 

processing, businesses can analyze previously untapped data sources independent or together with their 

existing enterprise data to gain new insights resulting in significantly better and faster decisions.  

What is Machine Learning? 

Machine learning is a branch of science that deals with programming the systems in such a way 

that they automatically learn and improve with experience. Here, learning means recognizing and 

understanding the input data and making wise decisions based on the supplied data. 

It is very difficult to cater to all the decisions based on all possible inputs. To tackle this problem, 

algorithms are developed. These algorithms build knowledge from specific data and past experience with 

the principles of statistics, probability theory, logic, combinatorial optimization, search, reinforcement 

learning, and control theory. 

The developed algorithms form the basis of various applications such as: 

• Vision processing 

• Language processing 

• Forecasting (e.g., stock market trends) 

• Pattern recognition 

• Games 

• Data mining 

• Expert systems 

• Robotics 

Machine learning is a vast area and it is quite beyond the scope of this tutorial to cover all its features. 

There are several ways to implement machine learning techniques, however the most commonly used 

ones are supervised and unsupervised learning. 

INTRODUCTION 

G B Gangadhar
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Supervised Learning 

Supervised learning deals with learning a function from available training data. A supervised learning 

algorithm analyzes the training data and produces an inferred function, which can be used for mapping 

new examples. Common examples of supervised learning include: 

• classifying e-mails as spam, 

• labeling webpages based on their content, and 

• voice recognition. 

There are many supervised learning algorithms such as neural networks, Support Vector Machines 

(SVMs), and Naive Bayes classifiers. Mahout implements Naive Bayes classifier. 

Unsupervised Learning 

Unsupervised learning makes sense of unlabeled data without having any predefined dataset for its 

training. Unsupervised learning is an extremely powerful tool for analyzing available data and look for 

patterns and trends. It is most commonly used for clustering similar input into logical groups. Common 

approaches to unsupervised learning include: 

• k-means 

• self-organizing maps, and 

• hierarchical clustering 

 

 

Clustering is used to form groups or clusters of similar data based on common characteristics. Clustering 

is a form of unsupervised learning. 

• Search engines such as Google and Yahoo! use clustering techniques to group data with similar 

characteristics. 

• Newsgroups use clustering techniques to group various articles based on related topics. 

The clustering engine goes through the input data completely and based on the characteristics of the data, 

it will decide under which cluster it should be grouped. 

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., 

data without defined categories or groups). The goal of this algorithm is to find groups in the data, with 

the number of groups represented by the variable K. The algorithm works iteratively to assign each data 

point to one of K groups based on the features that are provided. Data points are clustered based on 

feature similarity. The results of the K-means clustering algorithm are: 

1. The centroids of the K clusters, which can be used to label new data 

2. Labels for the training data (each data point is assigned to a single cluster) 

1. K-Means  Clustering 
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Rather than defining groups before looking at the data, clustering allows you to find and analyze the 

groups that have formed organically. The "Choosing K" section below describes how the number of 

groups can be determined.   

Each centroid of a cluster is a collection of feature values which define the resulting groups. Examining 

the centroid feature weights can be used to qualitatively interpret what kind of group each cluster 

represents.   

In general, we have n data points xi, i=1...n that have to be partitioned in k clusters. The goal is to assign 

a cluster to each data point. K-means is a clustering method that aims to find the positions ci, i=1...k of 

the clusters that minimize the distance from the data points to the cluster. K-means clustering solves 

 

K-means algorithm  

 

 

 

1. Clusters the data into k groups where k  is 

predefined. 

2. Select k points at random as cluster centers. 

3. Assign objects to their closest cluster center 

according to the Euclidean distance function. 

4. Calculate the centroid or mean of all objects 

in each cluster. 

5. Repeat steps 2, 3 and 4 until the same points 

are assigned to each cluster in consecutive 

rounds. 
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K-Means is relatively an efficient method. However, we need to specify the number of clusters, in 

advance and the final results are sensitive to initialization and often terminates at a local optimum. 

Unfortunately there is no global theoretical method to find the optimal number of clusters. A practical 

approach is to compare the outcomes of multiple runs with different k and choose the best one based on 

a predefined criterion. In general, a large k probably decreases the error but increases the risk of 

overfitting. 

  

Example: 

Suppose we want to group the visitors to a website using just their age (a one-dimensional space) as 

follows: 

15,15,16,19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65 

Initial clusters: 

Centroid (C1) = 16 [16] 

Centroid (C2) = 22 [22] 

Iteration 1: 

C1 = 15.33     [15,15,16] 

C2 = 36.25     [19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65] 

Iteration 2: 

C1 = 18.56      [15,15,16,19,19,20,20,21,22] 

C2 = 45.90      [28,35,40,41,42,43,44,60,61,65] 

Iteration 3: 

C1 = 19.50       [15,15,16,19,19,20,20,21,22,28] 

C2 = 47.89       [35,40,41,42,43,44,60,61,65] 

Iteration 4: 

C1 = 19.50 [15,15,16,19,19,20,20,21,22,28] 

C2 = 47.89 [35,40,41,42,43,44,60,61,65] 

No change between iterations 3 and 4 has been noted. By using clustering, 2 groups have been identified 

15-28 and 35-65. The initial choice of centroids can affect the output clusters, so the algorithm is often 

run multiple times with different starting conditions in order to get a fair view of what the clusters 

should be. 

15+15+16=46 

46/3=15.33 
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MapReduce Approach 

MapReduce works on keys and values, and is based on data partitioning. Thus, the assumption of having 

all data points in memory fails in this paradigm. We have to design the algorithm in such a manner that 

the task can be parallelized and doesn’t depend on other splits for any computation (Figure below).  

 
Figure . Single pass of K-Means on MapReduce 

 

The Mappers do the distance computation and spill out a key-value pair – <centroid_id, datapoint>. This 

step finds the associativity of a data point with the cluster.  

The Reducers work with specific cluster_id and a list of the data points associated with it. A reducer 

computes new means and writes to the new centroid file.  

Now, based on the user’s choice, algorithm termination method works – specific number of iterations, or 

comparison with centroid in the previous iteration. 

 

Figure . K-Means Algorithm. Algorithm termination method is user-driven 
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Mahout - Introduction 

We are living in a day and age where information is available in abundance. The information 

overload has scaled to such heights that sometimes it becomes difficult to manage our little 

mailboxes! Imagine the volume of data and records some of the popular websites (the likes of 

Facebook, Twitter, and Youtube) have to collect and manage on a daily basis. It is not uncommon 

even for lesser known websites to receive huge amounts of information in bulk. 

Normally we fall back on data mining algorithms to analyze bulk data to identify trends and draw 

conclusions. However, no data mining algorithm can be efficient enough to process very large 

datasets and provide outcomes in quick time, unless the computational tasks are run on multiple 

machines distributed over the cloud. 

We now have new frameworks that allow us to break down a computation task into multiple 

segments and run each segment on a different machine. Mahout is such a data mining framework 

that normally runs coupled with the Hadoop infrastructure at its background to manage huge 

volumes of data. 

What is Apache Mahout? 

A mahout is one who drives an elephant as its master. The name comes from its close association 

with Apache Hadoop which uses an elephant as its logo. 

Hadoop is an open-source framework from Apache that allows to store and process big data in a 

distributed environment across clusters of computers using simple programming models. 

Apache Mahout is an open source project that is primarily used for creating scalable machine 

learning algorithms. It implements popular machine learning techniques such as: 

a. Recommendation 

b. Classification 

c. Clustering 

Apache Mahout started as a sub-project of Apache’s Lucene in 2008. In 2010, Mahout became a 

top level project of Apache. 

Features of Mahout 

The primitive features of Apache Mahout are listed below. 

• The algorithms of Mahout are written on top of Hadoop, so it works well in distributed 

environment. Mahout uses the Apache Hadoop library to scale effectively in the cloud. 

• Mahout offers the coder a ready-to-use framework for doing data mining tasks on large 

volumes of data. 

• Mahout lets applications to analyze large sets of data effectively and in quick time. 

• Includes several MapReduce enabled clustering implementations such as k-means, fuzzy k-

means, Canopy, Dirichlet, and Mean-Shift. 

2. APACHE MAHOUT 
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• Supports Distributed Naive Bayes and Complementary Naive Bayes classification 

implementations. 

• Comes with distributed fitness function capabilities for evolutionary programming. 

• Includes matrix and vector libraries. 

Applications of Mahout 

• Companies such as Adobe, Facebook, LinkedIn, Foursquare, Twitter, and Yahoo use Mahout 

internally. 

• Foursquare helps you in finding out places, food, and entertainment available in a particular 

area. It uses the recommender engine of Mahout. 

• Twitter uses Mahout for user interest modelling. 

• Yahoo! uses Mahout for pattern mining. 

 

Getting started with Mahout 

Getting up and running with Mahout is relatively straightforward. To start, you need to install the 

following prerequisites: 

  

JDK 1.6 or higher 

Ant 1.7 or higher 

 

If you want to build the Mahout source, Maven 2.0.9 or 2.0.10 

You also need this article's sample code (see Download), which includes a copy of Mahout and its 

dependencies. Follow these steps to install the sample code: 

  

1. unzip sample.zip 

2. cd apache-mahout-examples 

3. ant install 

Step 3 downloads the necessary Wikipedia files and compiles the code. The Wikipedia file used is 

approximately 2.5 gigabytes, so download times will depend on your bandwidth. 

a. Recommendation 

Recommendation is a popular technique that provides close recommendations based on user 

information such as previous purchases, clicks, and ratings. 

• Amazon uses this technique to display a list of recommended items that you might be 

interested in, drawing information from your past actions. There are recommender engines 

that work behind Amazon to capture user behavior and recommend selected items based on 

your earlier actions. 

• Facebook uses the recommender technique to identify and recommend the “people you 

may know list”. 
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Building a recommendation engine: 

Mahout currently provides tools for building a recommendation engine through the Taste library 

— a fast and flexible engine for CF. Taste supports both user-based and item-based 

recommendations and comes with many choices for making recommendations, as well as 

interfaces for you to define your own. Taste consists of five primary components that work with 

Users, Items and Preferences: 

  

Data Model: Storage for Users, Items, and Preferences 

 

User Similarity: Interface defining the similarity between two users 

 

Item Similarity: Interface defining the similarity between two items 

 

Recommender: Interface for providing recommendations 

 

User Neighborhood: Interface for computing a neighborhood of similar users that can then be used 

by the Recommenders 

These components and their implementations make it possible to build out complex 

recommendation systems for either real-time-based recommendations or offline recommendations. 

Real-time-based recommendations often can handle only a few thousand users, whereas offline 

recommendations can scale much higher. Taste even comes with tools for leveraging Hadoop to 

calculate recommendations offline. In many cases, this is a reasonable approach that allows you to 

meet the demands of a large system with a lot of users, items, and preferences. 

b. Classification 

Classification, also known as categorization, is a machine learning technique that uses known 

data to determine how the new data should be classified into a set of existing categories. 

Classification is a form of supervised learning. 

• Mail service providers such as Yahoo! and Gmail use this technique to decide whether a 

new mail should be classified as a spam. The categorization algorithm trains itself by 

analyzing user habits of marking certain mails as spams. Based on that, the classifier 

decides whether a future mail should be deposited in your inbox or in the spams folder. 
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• iTunes application uses classification to prepare playlists. 

 

How Classification Works 

While classifying a given set of data, the classifier system performs the following actions: 

• Initially a new data model is prepared using any of the learning algorithms. 

• Then the prepared data model is tested. 

• Thereafter, this data model is used to evaluate the new data and to determine its class. 

 

Applications of Classification 

• Credit card fraud detection - The Classification mechanism is used to predict credit card 

frauds. Using historical information of previous frauds, the classifier can predict which 

future transactions may turn into frauds. 

• Spam e-mails - Depending on the characteristics of previous spam mails, the classifier 

determines whether a newly encountered e-mail should be sent to the spam folder. 

Naive Bayes Classifier 

Mahout uses the Naive Bayes classifier algorithm. It uses two implementations: 
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• Distributed Naive Bayes classification 

• Complementary Naive Bayes classification 

Naive Bayes is a simple technique for constructing classifiers. It is not a single algorithm for 

training such classifiers, but a family of algorithms. A Bayes classifier constructs models to 

classify problem instances. These classifications are made using the available data. 

An advantage of naive Bayes is that it only requires a small amount of training data to estimate the 

parameters necessary for classification. 

For some types of probability models, naive Bayes classifiers can be trained very efficiently in a 

supervised learning setting. 

Despite its oversimplified assumptions, naive Bayes classifiers have worked quite well in many 

complex real-world situations. 

Procedure of Classification 

The following steps are to be followed to implement Classification: 

• Generate example data 

• Create sequence files from data 

• Convert sequence files to vectors 

• Train the vectors 

• Test the vectors 

c. Clustering 

Clustering is used to form groups or clusters of similar data based on common characteristics. 

Clustering is a form of unsupervised learning. 

• Search engines such as Google and Yahoo! use clustering techniques to group data with 

similar characteristics. 

• Newsgroups use clustering techniques to group various articles based on related topics. 

The clustering engine goes through the input data completely and based on the characteristics of 

the data, it will decide under which cluster it should be grouped.  

Using Mahout, we can cluster a given set of data. The steps required are as follows: 

• Algorithm You need to select a suitable clustering algorithm to group the elements of a 

cluster. 

• Similarity and Dissimilarity You need to have a rule in place to verify the similarity between 

the newly encountered elements and the elements in the groups. 

• Stopping Condition A stopping condition is required to define the point where no clustering 

is required. 
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Procedure of Clustering 

To cluster the given data you need to - 

• Start the Hadoop server. Create required directories for storing files in Hadoop File System. 

(Create directories for input file, sequence file, and clustered output in case of canopy). 

• Copy the input file to the Hadoop File system from Unix file system. 

• Prepare the sequence file from the input data. 

• Run any of the available clustering algorithms. 

• Get the clustered data. 

Mahout supports several clustering-algorithm implementations, all written in Map-Reduce, each with its 

own set of goals and criteria: 

Canopy: A fast clustering algorithm often used to create initial seeds for other clustering algorithms. 

k-Means (and fuzzy k-Means): Clusters items into k clusters based on the distance the items are from the 

centroid, or center, of the previous iteration. 

Mean-Shift: Algorithm that does not require any a priori knowledge about the number of clusters and can 

produce arbitrarily shaped clusters. 

Dirichlet: Clusters based on the mixing of many probabilistic models giving it the advantage that it 

doesn't need to commit to a particular view of the clusters prematurely. 
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Report on Page-Rank Algortihm using Map-Reduce 

Abstract: 

This report presents my exploration of big data analytics, focusing on [Specific 
Area/Dataset, e.g., customer purchase patterns from an e-commerce platform, social 
media sentiment analysis related to a product launch, or weather data analysis for 
predicting regional rainfall]. Utilizing [Tools/Techniques, e.g., Python with Pandas and 
Scikit-learn, Hadoop/Spark, or cloud-based analytics platforms], I aimed to [Specific 
Goals, e.g., identify key customer segments, understand public perception, or build a 
predictive model]. This report outlines the data acquisition, processing, analysis, and key 
findings, highlighting the potential of big data analytics in [Relevant Field]. 

1. Introduction: 

The exponential growth of data, commonly referred to as "big data," presents both 
challenges and opportunities. Big data analytics allows us to extract meaningful insights 
from these vast datasets, enabling data-driven decision-making. This project aimed to 
gain practical experience in applying big data analytics techniques to a real-world dataset, 
focusing on [Specific Area/Dataset]. I chose this area because [Reasons for Choosing 
the Area, e.g., personal interest, relevance to course material, or potential for practical 
application]. 

2. Data Acquisition and Preprocessing: 

Data Source: The dataset was obtained from [Source of Data, e.g., Kaggle, a public API, 
or a simulated dataset]. It consisted of [Brief Description of Data, e.g., CSV files, JSON 
data, or database tables] containing [Key Features of Data, e.g., customer IDs, product 
names, timestamps, or text data]. Key Aspects of Describing a Data Source: 

 Origin:  
o Where did the data come from? Was it from a public repository, a private 

database, a web API, or collected through sensors? 
o Is it internal data (from within an organization) or external data (from outside 

sources)? 
 Type:  

o What format is the data in? (e.g., CSV, JSON, XML, SQL database, text 
files, images, videos) 

o Is it structured, semi-structured, or unstructured? 



 

 Volume:  
o Provide an idea of the size of the dataset. (e.g., number of records, file size) 

 Accessibility:  
o How was the data accessed? (e.g., downloaded directly, accessed via API, 

queried from a database) 
 Context:  

o What does the data represent? (e.g., customer transactions, social media 
posts, sensor readings) 

Common Data Source Examples: 

 Social Media:  
o Twitter API: For retrieving tweets and user data. 
o Facebook Graph API: For accessing Facebook data. 
o LinkedIn API: For professional networking data. 

 Web Data:  
o Web scraping: Extracting data from websites. 
o Public APIs: Data provided by websites or online services. 
o Web server logs: Records of website traffic. 

 Transactional Data:  
o Retail point-of-sale (POS) systems: Data from sales transactions. 
o Online e-commerce platforms: Customer purchase history. 
o Financial databases: Banking transactions, stock market data. 

 Sensor Data:  
o IoT devices: Data from sensors in various applications (e.g., environmental 

monitoring, industrial automation). 
o GPS data: Location information. 
o Medical devices: Patient health data. 

 Public Datasets:  

o Kaggle: A platform for data science competitions and datasets. 
o Government websites: Data from agencies like the U.S. Census Bureau or 

data.gov. 
o Academic research datasets. 

 Databases:  
o SQL databases (MySQL, PostgreSQL, etc.) 

o NoSQL databases (MongoDB, Cassandra, etc.) 

Example "Data Source" Descriptions: 

 "The dataset was obtained from the Kaggle 'E-commerce Customer Behavior' 
dataset, which contains anonymized customer purchase records in CSV format." 

 "Social media data was collected using the Twitter API, retrieving tweets containing 
specific hashtags related to the product launch." 

 "Sensor data was gathered from a network of IoT devices deployed in a 

manufacturing facility, recording temperature and pressure readings in real-time." 



Data Cleaning: The initial dataset required significant cleaning and preprocessing. This 

involved:  

 Accuracy: Dirty data leads to inaccurate results. 
 Reliability: Clean data ensures your analysis is trustworthy. 
 Efficiency: Clean data speeds up processing and analysis. 

 Validity: Clean data makes your findings more valid. 

Key Aspects to Cover in Your Report: 

1. Identify Data Quality Issues: 

o Start by explaining the initial state of your data. What problems did you find? 
o Common issues include:  

 Missing Values: Empty cells or null values. 
 Duplicate Records: Identical or near-identical rows. 
 Inconsistent Formatting: Dates, times, or text in different formats. 
 Outliers: Extreme values that deviate from the norm. 
 Incorrect Data Types: Text stored as numbers, or vice versa. 
 Inconsistent Labels: Variations in category names. 
 Structural Errors: Typos, misspellings, or incorrect capitalization. 

2. Describe Cleaning Methods: 

o Explain the specific techniques you used to address each issue. 
o Examples:  

 Handling Missing Values:  
 Deletion: Removing rows or columns with missing values 

(when appropriate). 
 Imputation: Replacing missing values with:  

 Mean, median, or mode. 
 Predicted values from a model. 
 Values from other similar records. 

 Removing Duplicates:  

 Using functions to identify and remove duplicate rows. 
 Standardizing Formats:  

 Converting dates to a consistent format (e.g., YYYY-MM-DD). 
 Standardizing text capitalization and spacing. 

 Handling Outliers:  
 Removing outliers (if they are errors). 
 Transforming outliers (e.g., using logarithmic 

transformations). 
 Using methods robust to outliers. 

 Correcting Data Types:  

 Converting strings to numbers, or vice versa. 
 Correcting Inconsistent Labels:  

 Using find and replace functions. 
 Correcting Structural Errors:  

 Using string manipulation functions. 
3. Document Your Process: 

o Explain why you chose each method. 
o If you made decisions that could affect the results, explain your reasoning. 



o If you use code, provide examples or snippets. 
o It is very important to document what you did, so that your work can be 

reproduced. 
4. Validate Your Results: 

o After cleaning, check your data to ensure that the issues have been 
resolved. 

o Use summary statistics, visualizations, or data profiling tools. 

Example Phrases: 

 "Missing values in the 'age' column were imputed using the median age." 
 "Duplicate records were removed based on the 'customer ID' and 'transaction 

timestamp' columns." 
 "Date formats were standardized to YYYY-MM-DD to ensure consistency." 
 "Outliers in the 'sales amount' column were identified using the interquartile range 

(IQR) method and removed." 

  
o Handling missing values using [Methods used, e.g., imputation, deletion]. 
o Removing duplicate records. 
o Standardizing data formats and units. 
o Converting data types as needed. 
o [Specific cleaning steps related to your data, e.g. tokenization of text, 

geospatial data processing]. 
 Data Transformation: To prepare the data for analysis, the following 

transformations were applied:  
o [Feature engineering, e.g., creating new features from existing ones]. 
o [Data aggregation, e.g., summarizing data by time period or category]. 
o [Data normalization or standardization]. 

3. Analysis and Methodology: 

 Tools and Technologies: The analysis was performed using [List of Tools, e.g., 

Python (Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn), SQL, Apache Spark]. 
 Analytical Techniques:  

o Descriptive Analysis: [Describe the descriptive analysis performed, e.g., 
calculating summary statistics, visualizing data distributions, identifying 
trends]. 

o Exploratory Data Analysis (EDA): [Describe the EDA performed, e.g., 

correlation analysis, scatter plots, heatmaps, identifying patterns and 
relationships]. 

o Predictive Modeling (if applicable): [Describe the predictive models used, 

e.g., regression, classification, clustering, explain the model selection 
process, and evaluation metrics]. 

o Sentiment Analysis(if applicable):[Describe the sentiment analysis 
performed, the tools used, and the results obtained]. 

o Cluster analysis(if applicable):[Describe the clustering performed, the 

algorithms used, and the results obtained]. 



4. Results and Findings: 

1. Key Findings: [Summarize the key findings from the analysis, e.g., significant 
customer segments, influential factors in sentiment, accurate predictions from the 
model].  

2. Focus on Insights, Not Just Results: 

o Don't just list numbers or outputs. Explain what they mean in the context of 
your research question or goals. 

o Example: Instead of saying "The model accuracy was 85%," say "The 
predictive model accurately identified customer segments with 85% 
accuracy, enabling targeted marketing campaigns." 

3. Highlight Significant Patterns and Trends: 

o Identify and describe any notable patterns, trends, or correlations in your 
data. 

o Use clear and concise language. 
o Example: "A strong positive correlation was observed between social media 

engagement and product sales, suggesting that online marketing efforts 
significantly impact revenue." 

4. Quantify Your Findings: 
o Whenever possible, use numbers and statistics to support your claims. 
o Example: "Customer churn decreased by 15% after the implementation of 

the new customer support program." 
5. Visualize Your Findings: 

o Use charts, graphs, and other visualizations to illustrate your key findings. 
o Make sure your visualizations are clear, easy to understand, and relevant 

to your analysis. 
o Provide captions and explanations for each visualization. 
o Example: Include a bar chart showing the distribution of customer segments 

or a line graph showing the trend of sales over time. 
6. Address Your Research Question or Goals: 

o Ensure that your key findings directly address the research question or 
goals you stated in your introduction. 

o Example: If your goal was to identify factors influencing customer 
satisfaction, your key findings should highlight those factors. 

7. Prioritize Your Findings: 
o Not all findings are equally important. Focus on the most significant and 

relevant insights. 
o Organize your findings logically, perhaps from most to least important. 

8. Provide Context: 
o Explain the implications of your findings. What do they mean for the 

business, organization, or field of study? 
o Example: "The identification of high-value customer segments allows for 

targeted marketing strategies, potentially increasing customer lifetime value 
and revenue." 

Examples of Strong "Key Findings" Statements: 

 "The analysis revealed a significant seasonal trend in product sales, with peak 
sales occurring during the holiday season." 



 "Sentiment analysis of social media data indicated a predominantly positive public 
perception of the new product launch." 

 "The predictive model identified three key factors influencing customer churn: 
customer service interactions, product usage frequency, and pricing." 

 "Cluster analysis revealed distinct customer segments with varying purchasing 
behaviors, enabling personalized marketing campaigns." 

 "The analysis of sensor data showed a correlation between temperature 
fluctuations and equipment performance, suggesting a need for improved 

temperature control." 

Tips for Writing Effective "Key Findings": 

 Be clear and concise. 
 Use strong verbs. 
 Avoid jargon. 
 Focus on the "so what?" factor. 

 Support your findings with evidence. 

  
 Visualizations: [Include relevant visualizations, e.g., charts, graphs, plots, to 

illustrate the findings. Provide captions and explanations for each visualization]. 

 Clarity: They simplify complex data, making it easier to identify patterns and 

trends. 
 Communication: They effectively convey findings to a wider audience, including 

those without technical expertise. 
 Exploration: They facilitate data exploration and discovery. 

 Impact: They make your report more engaging and memorable. 

Types of Visualizations and When to Use Them: 

 Bar Charts:  

o Used to compare categorical data. 
o Example: Comparing sales across different product categories. 

 

 Line Charts:  
o Used to show trends over time. 

o Example: Tracking website traffic or sales growth over months. 



 

 Scatter Plots:  
o Used to show the relationship between two numerical variables. 

o Example: Showing the correlation between advertising spend and sales. 

 

 Histograms:  

o Used to show the distribution of a single numerical variable. 
o Example: Showing the distribution of customer ages. 

 

 Pie Charts:  

o Used to show the proportion of different categories in a whole. 
o Caution: Use sparingly, as they can be difficult to interpret with many 

categories. Bar charts are often a better choice. 
o Example: showing the percentage of customers from different regions. 



 

 Heatmaps:  

o Used to show the correlation between multiple variables or the frequency of 
data points. 

o Example: Showing customer purchase patterns across different product 
categories and time periods. 

 

 Box Plots:  

o Used to show the distribution and outliers of a numerical variable. 
o Example: showing the distribution of customer spending, and the presence 

of outliers. 

 

 Word Clouds:  

o Used to visualize the frequency of words in text data. 
o Example: displaying the most used words in customer reviews. 



 

 Geospatial Visualizations (Maps):  

o Used to show data related to geographic locations. 
o Example: displaying sales by region or customer density on a map. 

 

Best Practices for Creating Visualizations: 

 Choose the Right Visualization: Select the visualization that best suits the type 

of data and the message you want to convey. 
 Keep It Simple: Avoid clutter and unnecessary details. Focus on the key 

message. 
 Use Clear Labels and Titles: Make sure your visualizations are easy to 

understand. 
 Use Consistent Formatting: Maintain consistent colors, fonts, and styles 

throughout your report. 
 Provide Captions and Explanations: Explain what the visualization shows and 

highlight key insights. 
 Use Color Effectively: Use color to highlight important data points and avoid 

using too many colors. 
 Ensure Accessibility: Consider colorblindness and other accessibility issues. 
 Scale Appropriately: Make sure your axes are scaled appropriately to avoid 

misleading interpretations. 
 Use Interactive Visualizations (If Possible): Interactive visualizations can allow 

users to explore the data in more detail. 

Example of Visualizations in a Report: 

 "Figure 1: Bar chart showing the distribution of customer segments based on their 
purchasing behavior." 



 "Figure 2: Line graph showing the trend of website traffic over the past year." 
 "Figure 3: Scatter plot showing the correlation between advertising spend and 

sales revenue." 
 "Figure 4: Heatmap showing the correlation between different product categories 

purchased." 

Tools for Creating Visualizations: 

 Python (Matplotlib, Seaborn, Plotly) 
 R (ggplot2) 
 Tableau 
 Power BI 

 Google Data Studio. 

 

 Interpretation: [Interpret the findings in the context of the research question or 

goals. Discuss the implications of the results]. 

  Contextualize Your Findings: 

 Relate your findings back to your research question, goals, or the problem you 
were trying to solve. 

 Explain how your results fit within the broader context of your field or industry. 
 Example: "The observed increase in customer churn during promotional periods 

suggests a need for improved customer support during peak demand." 

  Explain the "Why" Behind the "What": 

 Don't just state what you found; explain why it happened. 
 Look for underlying causes and mechanisms. 
 Example: "The correlation between social media engagement and sales could be 

attributed to increased brand awareness and positive word-of-mouth marketing." 

  Draw Meaningful Conclusions: 

 Summarize the key takeaways from your analysis. 
 Highlight the most significant insights and their implications. 
 Example: "The identification of high-value customer segments allows for targeted 

marketing strategies, potentially leading to increased customer lifetime value." 

  Discuss the Practical Implications: 

 Explain how your findings can be used to inform decision-making or improve 
processes. 

 Provide actionable recommendations based on your analysis. 
 Example: "Based on the analysis, we recommend implementing a personalized 

recommendation system to improve customer engagement and increase sales." 



  Acknowledge Limitations and Potential Biases: 

 Discuss any limitations of your data or analysis that could affect the interpretation 
of your findings. 

 Acknowledge potential biases in your data or methodology. 
 Example: "The analysis was limited by the availability of historical data, which may 

have affected the accuracy of the predictive model." 

  Avoid Overinterpretation: 

 Be careful not to draw conclusions that are not supported by your data. 
 Avoid making generalizations beyond the scope of your analysis. 
 Stick to what your data shows. 

  Connect Findings to Existing Knowledge: 

 Compare your findings to previous research or industry benchmarks. 
 Discuss how your results confirm, contradict, or expand upon existing knowledge. 
 Example: "The observed trend aligns with previous research on customer behavior 

in online retail, which suggests that personalized recommendations can increase 
sales." 

  Use Clear and Concise Language: 

 Avoid jargon and technical terms that may be unfamiliar to your audience. 
 Use clear and straightforward language to explain your findings. 

 

5. Discussion and Conclusion: 

 Discussion: [Discuss the limitations of the analysis, potential sources of error, and 

areas for future research]. 

1. Summarize Key Findings in Context: 

o Briefly restate the most significant findings and their implications. 
o Connect these findings to the broader context of your research question or 

problem.    
o Emphasize the "so what?" factor. 

2. Acknowledge and Discuss Limitations: 
o Be transparent about the limitations of your data, methodology, and 

analysis.    
o Examples of limitations:  

 Data Limitations:  
 Incomplete or biased data.    
 Small sample size. 
 Limited data sources. 
 Data quality issues. 

 Methodological Limitations:  



 Choice of analytical techniques. 
 Assumptions made during analysis.    
 Potential biases in the methodology. 

 Computational Limitations:  

 Limited processing power. 
 Issues with software or tools. 

o Explain how these limitations might have affected your results and 
interpretations.    

o Being honest about limitations strengthens your report's credibility. 
3. Address Potential Biases: 

o Discuss any potential biases that could have influenced your data or 
analysis. 

o Explain how you attempted to mitigate these biases. 
o Example: "The sentiment analysis may be biased towards English-

language tweets, as the natural language processing model was primarily 
trained on English text." 

4. Compare and Contrast with Existing Research: 
o Discuss how your findings compare to previous research or industry 

benchmarks. 
o Highlight any similarities or differences and explain potential reasons for 

these variations. 
o This demonstrates your understanding of the existing literature and helps 

contextualize your findings.    
5. Suggest Future Research Directions: 

o Based on your findings and limitations, propose areas for future research. 
o Identify unanswered questions or potential extensions of your work.    
o Example: "Future research could explore the impact of personalized 

recommendations on customer satisfaction using a larger and more diverse 
dataset." 

o Suggest ways to improve the methodology or data collection process. 
6. Discuss the Practical Implications of Your Findings: 

o Explain how your findings can be used to inform decision-making or improve 
processes. 

o Provide actionable recommendations based on your analysis. 
o Emphasize the real-world impact of your work. 

7. Reflect on the Process: 

o Briefly discuss any challenges you encountered during the project and how 
you overcame them. 

o Share any lessons learned or insights gained from the experience. 
o This adds a personal touch and demonstrates your critical thinking skills. 

Example Phrases: 

 "While the analysis revealed a strong correlation, it's important to acknowledge the 
limitations of the dataset, which primarily consisted of data from a single region." 

 "The findings align with previous research on..., but further investigation is needed 
to explore the underlying mechanisms." 

 "Future research could explore the impact of... by utilizing a larger and more 
diverse dataset." 



 "One limitation of this study was..." 
 "Despite the limitations, this study provides valuable insight into..." 

Key Considerations: 

 Maintain a balanced and objective tone. 
 Avoid overstating the significance of your findings. 
 Focus on providing a thoughtful and critical analysis of your work. 

 

 Conclusion: [Summarize the main conclusions of the project and reiterate the 
potential of big data analytics in [Relevant Field]. Reflect on the learning 

experience and the skills gained]. 

1. Restate the Main Purpose and Research Question: 
o Briefly remind the reader of the project's objective and the research 

question you aimed to answer. 
o This provides context and reinforces the importance of your work. 

2. Summarize the Key Findings: 
o Briefly recap the most significant insights and results from your analysis. 
o Focus on the key takeaways that address your research question. 
o Avoid introducing new information or details. 

3. Emphasize the Significance and Implications: 
o Highlight the practical implications of your findings and their significance to 

the field or industry. 
o Explain how your work contributes to existing knowledge or solves a real-

world problem. 
o Emphasize the "so what?" factor. 

4. Reiterate the Value of Big Data Analytics: 
o Briefly discuss how your project demonstrates the power and potential of 

big data analytics. 
o Highlight the benefits of using data-driven approaches for decision-making. 

5. Provide a Clear and Concise Closing Statement: 
o End with a strong and memorable statement that summarizes the overall 

impact of your work. 
o Leave the reader with a clear understanding of the project's key 

contributions. 

What to Avoid in Your Conclusion: 

 Introducing new information or details: The conclusion should be a summary, 

not a place for new data. 
 Overstating the significance of your findings: Be realistic and avoid making 

exaggerated claims. 
 Apologizing for limitations: Acknowledge limitations in the discussion section, 

but focus on the positive contributions of your work in the conclusion. 
 Repeating the entire report: Keep the conclusion concise and focused on the 

key takeaways. 



 Vague or generic statements: Be specific and provide concrete examples of the 

impact of your work. 

Example Conclusion Phrases: 

 "In conclusion, this project successfully demonstrated the effectiveness of 
[analytical technique] in [specific application], providing valuable insights into [key 
findings]." 

 "The analysis revealed a clear correlation between [variables], highlighting the 
potential for [practical application] through data-driven decision-making." 

 "This study underscores the importance of leveraging big data analytics to [achieve 
specific goal] and provides a foundation for future research in [related field]." 

 "Ultimately, this project highlights the transformative power of big data analytics in 
[industry/field], enabling organizations to [achieve specific benefit]." 

 "By identifying [key findings], this research contributes to a deeper understanding 
of [topic] and offers actionable insights for [target audience]." 

 

 Lessons Learned: [Describe the challenges you faced and how you overcame 

them. Describe what you have learned from this project]. 

 Demonstrates Reflection: It shows that you've thought critically about your 

experience. 
 Highlights Growth: It showcases the skills and knowledge you've gained. 
 Provides Practical Insights: It offers valuable takeaways for yourself and others. 
 Adds a Personal Touch: It makes your report more engaging and relatable. 

What to Include in "Lessons Learned": 

1. Technical Skills and Knowledge: 
o What specific technical skills did you acquire or improve? (e.g., data 

cleaning, data visualization, machine learning algorithms, specific software 
or programming languages) 

o What new concepts or theories did you learn? 
o Example: "I learned how to effectively use Pandas for data cleaning and 

manipulation, which significantly improved the efficiency of my analysis." 
2. Problem-Solving and Analytical Skills: 

o What challenges did you encounter during the project, and how did you 
overcome them? 

o What problem-solving strategies did you develop? 
o What did you learn about the process of data analysis? 
o Example: "I learned the importance of thoroughly exploring the data before 

applying any analytical techniques. I realized that a deep understanding of 
the data is crucial for accurate results." 

3. Data Management and Organization: 

o What did you learn about organizing and managing large datasets? 
o What best practices did you discover for data storage and retrieval? 



o Example: "I learned the importance of version control for data and code, 
which helped me avoid errors and track changes." 

4. Communication and Collaboration (if applicable): 
o If you worked in a team, what did you learn about collaboration and 

communication? 
o How did you improve your ability to communicate complex data insights? 
o Example: "Working in a team helped me improve my communication skills, 

as I learned how to effectively explain complex data insights to non-
technical team members." 

5. Time Management and Project Planning: 

o What did you learn about managing your time and planning a large project? 
o How did you prioritize tasks and meet deadlines? 
o Example: "I learned the importance of breaking down a large project into 

smaller, manageable tasks and setting realistic deadlines." 
6. Areas for Improvement: 

o What would you do differently if you were to do the project again? 
o What areas do you want to improve in the future? 
o Example: "In the future, I would like to explore more advanced machine 

learning algorithms and techniques to improve the accuracy of my predictive 
models." 

7. Unexpected Insights: 
o Were there any unexpected turns, or insights that you gained that you 

where not expecting? 
o Example: "I was surprised by how much of the project was dedicated to 

cleaning data. I now have a much greater appreciation for the importance 
of quality data." 

Tips for Writing "Lessons Learned": 

 Be specific and provide concrete examples. 
 Be honest and reflective. 
 Focus on the positive aspects of your learning experience. 

 Keep it concise and relevant to the project. 

 

6. References: 

 [List of references used, e.g., academic papers, books, websites, software 

documentation]. 

7. Appendix (Optional): 

 [Include any supplementary materials, e.g., code snippets, detailed tables, 

additional visualizations]. 

Example of a specific section: 

4. Results and Findings (Example: Customer Purchase Patterns): 



"The analysis revealed three distinct customer segments based on their purchasing 
behavior. Segment 1, "High Spenders," comprised customers with frequent and high-
value purchases. Segment 2, "Occasional Buyers," consisted of customers with 
infrequent purchases and moderate spending. Segment 3, "Budget Shoppers," included 
customers with frequent purchases of low-value items. A heatmap of product categories 
purchased by each segment showed clear differences in their preferences. For instance, 
High Spenders tended to purchase electronics and luxury goods, while Budget Shoppers 
focused on household essentials. A predictive model, using a random forest classifier, 
achieved an accuracy of 85% in predicting customer segment based on purchase 
history." 
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