
83 Page

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (CSE)– III-II Sem L T P C

 3 0 0 3

(19A05602T) BIG DATA ANALYTICS

(Common to CSE & IT)

The course is designed to

 Understand the basic concepts and importance of Big Data

 Familiarize with the installation of Hadoop and how to analyze the Big Data

 Understand the design concepts of HDFS

 Provide good insight for developing a MapReduce applications

 Understand Hadoop environment.

 Explore the concepts of Pig, Hive, Spark and HBase

UNIT-I

Introduction to Big Data:What is Big Data? Why Big Data is Important? Meet Hadoop, Data,

Data Storage and Analysis, Comparison with other systems, History of Apache Hadoop, Hadoop

Ecosystem, VMWare Installation of Hadoop. Analyzing the Data with Hadoop, Scaling Out.

Learning Outcomes:

At the end of the unit, students will be able to:

 Identify the characteristics of datasets. (L3)

 Compare trivial data and big data for various applications. (L4)

 Choose and implement various ways of selecting suitable model parameters.(L1)

UNIT- II

HDFS: The Design of HDFS, HDFS Concepts, The Command-Line Interface, Hadoop File

systems, The Java Interface, Data flow.

MapReduce: Developing a MapReduce application, The Configuration API, Setting up the

Development Environment, Running Locally on Test Data, Running on a Cluster

Learning Outcomes:

At the end of the unit, students will be able to:

● Understand and apply scaling up Hadoop techniques and associated technologies.(L2)

● Estimate suitable test data. (L5)

● Apply the MapReduce application on a cluster.(L3)

84 Page

UNIT-III

How MapReduce Works: Anatomy of a MapReduce, Job Run, Failures, Shuffle and Sort, Task

Execution.

MapReduce Types and Formats:MapReduce Types, Input formats, output formats.

Learning Outcomes:

At the end of the unit, students will be able to:

● Explore the Anatomy of MapReduce. (L5)

● Illustrate various input and output formats of MapReduce. (L2)

● List various MapReduce types.(L1)

UNIT-IV

Hadoop Environment: Setting up a Hadoop Cluster, Cluster specification, Cluster Setup and

Installation, Hadoop Configuration, Security.

Pig: Installing and Running Pig, an Example, Comparison with Databases, Pig Latin, User-

Defined Functions, Data Processing Operators.

Learning Outcomes:

At the end of the unit, students will be able to:

● Show the cluster setup and installation.(L2)

● Demonstrate the Configure the Hadoop.(L2)

● Compare Hadoop with various Databases.(L5)

UNIT-V

Hive: Installing Hive, Running Hive, Comparison with traditional Databases, HiveQL, Tables,

Querying Data.

Spark: Installing Spark, Resilient Distributed Datasets, Shared Variables, Anatomy of a Spark

Job Run.

HBase: HBasics, Installation, clients, Building an Online Query Application.

Learning Outcomes:

At the end of the unit, students will be able to:

● Explain various frameworks of Big Data. (L2)

● Compare Hive with traditional Databases.(L4)

● Learn how to build an online query application.(L1)

85 Page

Course Outcomes:

Upon completion of the course, the students should be able to:

 Explain the concepts and challenges of big data (L2)

 Determine why existing technologies are inadequate to analyze the large data. (L5)

 Outline the operations viz. Collect, manage, store, query, and analyze various forms of

big data. (L2)

 Apply large-scale analytic tools to solve some of the open big data problems. (L3)

 Analyze the impact of big data for business decisions and strategies.(L4)

 Design different big data applications. (L6)

Text Books:

1. Tom White, “Hadoop: The Definitive Guide”Fourth Edition, O’reilly Media, 2015.

2. Big Data, Big Analytics: Emerging business intelligence and analytic trends for today’s

businesses, Michael Minnelli, Michelle Chambers, and Ambiga Dhiraj, Wiley Cio Series

Reference Books:

1. Glenn J. Myatt, Making Sense of Data , John Wiley & Sons, 2007 Pete Warden,Big Data

Glossary, O’Reilly, 2011.

2. Michael Berthold, David J.Hand, Intelligent Data Analysis, Spingers, 2007.

3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos,Uderstanding Big

Data : Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill Publishing,

2012.

4. Anand Rajaraman and Jeffrey David UIIman, Mining of Massive Datasets Cambridge

University Press, 2012.

Introduction to BIG DATA

 1

UNIT-1

SYLLABUS:

1. Distributed programming using JAVA: Quick Recap
2. advanced Java Programming: Generics,
3. Threads,
4. Sockets,
5. Simple client server Programming using JAVA,
6. Difficulties in developing distributed programs for large scale clusters and
7. introduction to cloud computing.

1. DISTRIBUTED PROGRAMMING USING JAVA: QUICK RECAP

Anatomy of a Distributed Application

A distributed application is built upon several layers. At the lowest level, a network connects a group of
host computers together so that they can talk to each other. Network protocols like TCP/IP let the
computers send data to each other over the network by providing the ability to package and address
data for delivery to another machine. Higher-level services can be defined on top of the network
protocol, such as directory services and security protocols. Finally, the distributed application itself
runs on top of these layers, using the mid-level services and network protocols as well as the computer
operating systems to perform coordinated tasks across the network.

At the application level, a distributed application can be broken down into the following parts:

Processes

A process is created by describing a sequence of steps in a programming language, compiling the
program into an executable form, and running the executable in the operating system.

Threads

Every process has at least one thread of control. Some operating systems support the creation of
multiple threads of control within a single process. Each thread in a process can run independently
from the other threads, although there is usually some synchronization between them.

Objects

An object is a group of related data, with methods available for querying or altering the data
(getName(), set-Name()), or for taking some action based on the data (sendName(Out-putStreamo)).
Objects can be accessed by one or more threads within the process. And with the introduction of
distributed object technology like RMI and CORBA, an object can also be logically spread across
multiple processes, on multiple computers.

Agents

The term "agent" as a general way to refer to significant functional elements of a distributed
application. an agent is a higher-level system component, defined around a particular function, or
utility, or role in the overall system.

G B Gangadhar

Introduction to BIG DATA

 2

Example: A remote banking application, for example, might be broken down into a customer agent,
a transaction agent and an information brokerage agent. Agents can be distributed across multiple
processes, and can be made up of multiple objects and threads in these processes. Our customer
agent might be made up of an object in a process running on a client desktop that's listening for
data and updating the local display, along with an object in a process running on the bank server,
issuing queries and sending the data back to the client.

Developing distributed object-based applications can be done in Java using RMI or JavaIDL (an
implementation of CORBA).

The Client/Server Model

The client/server model is a form of distributed computing in which one program (the client)
communicates with another program (the server) for the purpose of exchanging information. In this
model, both the client and server usually speak the same language -- a protocol that both the client and
server understand -- so they are able to communicate.

While the client/server model can be implemented in various ways, it is typically done using low-level
sockets. Using sockets to develop client/server systems means that we must design a protocol, which is a
set of commands agreed upon by the client and server through which they will be able to communicate.

The Distributed Objects Model

A distributed object-based system is a collection of objects that isolates the requesters of services (clients)
from the providers of services (servers) by a well-defined encapsulating interface. In other words, clients
are isolated from the implementation of services as data representations and executable code. This is one
of the main differences that distinguishes the distributed object-based model from the pure client/server
model.

In the distributed object-based model, a client sends a message to an object, which in turns interprets the
message to decide what service to perform. This service, or method, selection could be performed by either
the object or a broker. The Java Remote Method Invocation (RMI) and the Common Object Request Broker
Architecture (CORBA) are examples of this model.

RMI

RMI is a distributed object system that enables you to easily develop distributed Java applications.
Developing distributed applications in RMI is simpler than developing with sockets since there is no need
to design a protocol, which is an error-prone task. In RMI, the developer has the illusion of calling a local
method from a local class file, when in fact the arguments are shipped to the remote target and interpreted,
and the results are sent back to the callers.

The Genesis of an RMI Application

Developing a distributed application using RMI involves the following steps:

1. Define a remote interface
2. Implement the remote interface
3. Develop the server
4. Develop a client
5. Generate Stubs and Skeletons, start the RMI registry, server, and client

Introduction to BIG DATA

 3

CORBA

The Common Object Request Broker Architecture (or CORBA) is an industry standard developed by the
Object Management Group (OMG) to aid in distributed objects programming. It is important to note that
CORBA is simply a specification. A CORBA implementation is known as an ORB (or Object Request Broker).
There are several CORBA implementations available on the market such as VisiBroker, ORBIX, and others.
JavaIDL is another implementation that comes as a core package with the JDK1.3 or above.

CORBA was designed to be platform and language independent. Therefore, CORBA objects can run on any
platform, located anywhere on the network, and can be written in any language that has Interface
Definition Language (IDL) mappings.

Similar to RMI, CORBA objects are specified with interfaces. Interfaces in CORBA, however, are specified in
IDL. While IDL is similar to C++, it is important to note that IDL is not a programming language.

The Genesis of a CORBA Application

There are a number of steps involved in developing CORBA applications. These are:

1. Define an interface in IDL
2. Map the IDL interface to Java (done automatically)
3. Implement the interface
4. Develop the server
5. Develop a client
6. Run the naming service, the server, and the client.

CORBA vs. RMI

Code-wise, it is clear that RMI is simpler to work with since the Java developer does not need to be familiar
with the Interface Definition Language (IDL). In general, however, CORBA differs from RMI in the following
areas:

 CORBA interfaces are defined in IDL and RMI interfaces are defined in Java. RMI-IIOP allows you to
write all interfaces in Java.

 CORBA supports in and out parameters, while RMI does not since local objects are passed by copy
and remote objects are passed by reference.

 CORBA was designed with language independence in mind. This means that some of the objects can
be written in Java, for example, and other objects can be written in C++ and yet they all can
interoperate. Therefore, CORBA is an ideal mechanism for bridging islands between different
programming languages. On the other hand, RMI was designed for a single language where all
objects are written in Java. Note however, with RMI-IIOP it is possible to achieve interoperability.

 CORBA objects are not garbage collected. As we mentioned, CORBA is language independent and
some languages (C++ for example) does not support garbage collection. RMI objects are garbage
collected automatically.

2. ADVANCED JAVA PROGRAMMING: GENERICS

The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.

Before generics, we can store any type of objects in collection i.e. non-generic. Now generics, forces the
java programmer to store specific type of objects.

Introduction to BIG DATA

 4

• Collections can store Objects of any Type

• Generics restricts the Objects to be put in a collection

• Generics ease identification of runtime errors at compile time

Advantage of Java Generics

There are mainly 3 advantages of generics. They are as follows:

1) Type-safety : We can hold only a single type of objects in generics. It doesn’t allow to store other
objects.

2) Type casting is not required: There is no need to typecast the object.

Before Generics, we need to type cast.

1. List list = new ArrayList();
2. list.add("hello");
3. String s = (String) list.get(0);//typecasting

After Generics, we don't need to typecast the object.

1. List<String> list = new ArrayList<String>();
2. list.add("hello");
3. String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime. The good
programming strategy says it is far better to handle the problem at compile time than runtime.

1. List<String> list = new ArrayList<String>();
2. list.add("hello");
3. list.add(32);//Compile Time Error

Syntax to use generic collection

1. ClassOrInterface<Type>

Example to use Generics in java

1. ArrayList<String>

Example of Generics in Java

Here, we are using the ArrayList class, but you can use any collection class such as ArrayList,
LinkedList, HashSet, TreeSet, HashMap, Comparator etc.

1. import java.util.*;
2. class TestGenerics1{
3. public static void main(String args[]){
4. ArrayList<String> list=new ArrayList<String>();
5. list.add("rahul");
6. list.add("jai");
7. //list.add(32);//compile time error
8.

Introduction to BIG DATA

 5

9. String s=list.get(1);//type casting is not required
10. System.out.println("element is: "+s);
11.
12. Iterator<String> itr=list.iterator();
13. while(itr.hasNext()){
14. System.out.println(itr.next());
15. }
16. }
17. }

Output:element is: jai
 rahul
 jai

Generic class

A class that can refer to any type is known as generic class. Here, we are using T type parameter
to create the generic class of specific type.

Let’s see the simple example to create and use the generic class.

Creating generic class:

1. class MyGen<T>{
2. T obj;
3. void add(T obj){this.obj=obj;}
4. T get(){return obj;}
5. }

The T type indicates that it can refer to any type (like String, Integer, Employee etc.). The type you
specify for the class, will be used to store and retrieve the data.

Using generic class:

Let’s see the code to use the generic class.

1. class TestGenerics3{
2. public static void main(String args[]){
3. MyGen<Integer> m=new MyGen<Integer>();
4. m.add(2);
5. //m.add("vivek");//Compile time error
6. System.out.println(m.get());
7. }}

Output:2

Type Parameters

The type parameters naming conventions are important to learn generics thoroughly. The
commonly type parameters are as follows:

1. T - Type
2. E - Element
3. K - Key

Introduction to BIG DATA

 6

4. N - Number
5. V - Value

Generic Method

Like generic class, we can create generic method that can accept any type of argument.

Let’s see a simple example of java generic method to print array elements. We are using here E to
denote the element.

1. public class TestGenerics4{
2.
3. public static < E > void printArray(E[] elements) {
4. for (E element : elements){
5. System.out.println(element);
6. }
7. System.out.println();
8. }
9. public static void main(String args[]) {
10. Integer[] intArray = { 10, 20, 30, 40, 50 };
11. Character[] charArray = { 'J', 'A', 'V', 'A', 'T','P','O','I','N','T' };
12.
13. System.out.println("Printing Integer Array");
14. printArray(intArray);
15.
16. System.out.println("Printing Character Array");
17. printArray(charArray);
18. }
19. }

Output:Printing Integer Array
 10
 20
 30
 40
 50
 Printing Character Array
 J
 A
 V
 A
 T
 P
 O
 I
 N
 T

Java Generics Wildcards

Question mark (?) is the wildcard in generics and represent an unknown type. The wildcard can be used as
the type of a parameter, field, or local variable and sometimes as a return type. We can’t use wildcards
while invoking a generic method or instantiating a generic class. In following sections, we will learn about
upper bounded wildcards, lower bounded wildcards, and wildcard capture.

Introduction to BIG DATA

 7

Java Generics Upper Bounded Wildcard

Upper bounded wildcards are used to relax the restriction on the type of variable in a method. Suppose we
want to write a method that will return the sum of numbers in the list, so our implementation will be
something like this.

public static double sum(List<Number> list){
 double sum = 0;
 for(Number n : list){
 sum += n.doubleValue();
 }
 return sum;
 }

Now the problem with above implementation is that it won’t work with List of Integers or Doubles because
we know that List<Integer> and List<Double> are not related, this is when upper bounded wildcard is
helpful. We use generics wildcard with extends keyword and the upper bound class or interface that will
allow us to pass argument of upper bound or it’s subclasses types.

The above implementation can be modified like below program.

package com.journaldev.generics;
import java.util.ArrayList;
import java.util.List;
public class GenericsWildcards {

 public static void main(String[] args) {
 List<Integer> ints = new ArrayList<>();
 ints.add(3); ints.add(5); ints.add(10);
 double sum = sum(ints);
 System.out.println("Sum of ints="+sum);
 }

 public static double sum(List<? extends Number> list){
 double sum = 0;
 for(Number n : list){
 sum += n.doubleValue();
 }
 return sum;
 }
}

It’s similar like writing our code in terms of interface, in above method we can use all the methods of upper
bound class Number. Note that with upper bounded list, we are not allowed to add any object to the list
except null. If we will try to add an element to the list inside the sum method, the program won’t compile.

Java Generics Unbounded Wildcard

Sometimes we have a situation where we want our generic method to be working with all types, in this
case unbounded wildcard can be used. Its same as using <? extends Object>.

public static void printData(List<?> list){
 for(Object obj : list){
 System.out.print(obj + "::");
 }

Introduction to BIG DATA

 8

 }

We can provide List<String> or List<Integer> or any other type of Object list argument to the printData
method. Similar to upper bound list, we are not allowed to add anything to the list.

Java Generics Lower bounded Wildcard

Suppose we want to add Integers to a list of integers in a method, we can keep the argument type as
List<Integer> but it will be tied up with Integers whereas List<Number> and List<Object> can also hold
integers, so we can use lower bound wildcard to achieve this. We use generics wildcard (?) with super
keyword and lower bound class to achieve this.

We can pass lower bound or any super type of lower bound as an argument in this case, java compiler
allows to add lower bound object types to the list.

public static void addIntegers(List<? super Integer> list){
 list.add(new Integer(50));
 }

Subtyping using Generics Wildcard

List<? extends Integer> intList = new ArrayList<>();
List<? extends Number> numList = intList; // OK. List<? extends Integer> is a subtype of List<? extends
Number>

Java Generics Type Erasure

Generics in Java was added to provide type-checking at compile time and it has no use at run time, so java
compiler uses type erasure feature to remove all the generics type checking code in byte code and insert
type-casting if necessary. Type erasure ensures that no new classes are created for parameterized types;
consequently, generics incur no runtime overhead.

For example if we have a generic class like below;

public class Test<T extends Comparable<T>> {

 private T data;
 private Test<T> next;

 public Test(T d, Test<T> n) {
 this.data = d;
 this.next = n;
 }

 public T getData() { return this.data; }
}

The Java compiler replaces the bounded type parameter T with the first bound interface, Comparable, as
below code:

public class Test {

 private Comparable data;
 private Test next;

Introduction to BIG DATA

 9

 public Node(Comparable d, Test n) {
 this.data = d;
 this.next = n;
 }

 public Comparable getData() { return data; }
}

3. THREADS

Multitasking refers to a computer's ability to perform multiple jobs concurrently more than one program

are running concurrently, e.g., UNIX

A thread is a single sequence of execution within a program

Multithreading refers to multiple threads of control within a single program each program can run

multiple threads of control within it, e.g., Web Browser

Concurrency vs. Parallelism

Threads and Processes

What are Threads Good For?

• To maintain responsiveness of an

application during a long running task.

• To enable cancellation of separable tasks.

• Some problems are intrinsically parallel.

• To monitor status of some resource (DB).

• Some APIs and systems demand it: Swing.

Application Thread

• When we execute an application:

– The JVM creates a Thread object whose task is defined by the main() method

– It starts the thread

– The thread executes the statements of the program one by one until the method returns
and the thread dies

Introduction to BIG DATA

 10

Multiple Threads in an Application

• Each thread has its private run-time stack

• If two threads execute the same method, each will have its own copy of the local variables the
methods uses

• However, all threads see the same dynamic memory (heap)

• Two different threads can act on the same object and same static fields concurrently

Creating Threads

• There are two ways to create our own Thread object

1. Subclassing the Thread class and instantiating a new object of that class

2. Implementing the Runnable interface

• In both cases the run() method should be implemented

Extending Thread

public class ThreadExample extends Thread {

 public void run () {
 for (int i = 1; i <= 100; i++) {
 System.out.println(“Thread: ” + i);
 }
 }
}

Implementing Runnable

public class RunnableExample implements Runnable {

 public void run () {
 for (int i = 1; i <= 100; i++) {
 System.out.println (“Runnable: ” + i);
 }
 }
}

• The Thread object’s run() method calls the Runnable object’s run() method

• Allows threads to run inside any object, regardless of inheritance

Thread Methods

void start()

– Creates a new thread and makes it runnable
– This method can be called only once

void run()
– The new thread begins its life inside this method

void stop() (deprecated)
The thread is being terminated

Introduction to BIG DATA

 11

yield() Causes the currently executing thread object to temporarily pause and allow

 other threads to execute
Allow only threads of the same priority to run

sleep(int m)/sleep(int m,int n)
The thread sleeps for m milliseconds, plus n nanoseconds

Starting the Threads

public class ThreadsStartExample

{

 public static void main (String argv[])

 {
 new ThreadExample ().start ();
 new Thread(new RunnableExample ()).start ();
 }
}

Scheduling Threads

Example:

public class PrintThread1 extends Thread

 {

 String name;
 public PrintThread1(String name)

 {
 this.name = name;
 }
 public void run()

{

 for (int i=1; i<500 ; i++)

 {
 try {
 sleep((long)(Math.random() * 100));
 } catch (InterruptedException ie) { }

Introduction to BIG DATA

 12

 System.out.print(name);
 }

 }
public static void main(String args[])

{

 PrintThread1 a = new PrintThread1("*");
 PrintThread1 b = new PrintThread1("-");
 PrintThread1 c = new PrintThread1("=");
 a.start();
 b.start();
 c.start();
}

 }
• Thread scheduling is the mechanism used to determine how runnable threads are allocated CPU

time

• A thread-scheduling mechanism is either preemptive or nonpreemptive

Preemptive Scheduling
• Preemptive scheduling – the thread scheduler preempts (pauses) a running thread to allow

different threads to execute

• Nonpreemptive scheduling – the scheduler never interrupts a running thread
• The nonpreemptive scheduler relies on the running thread to yield control of the CPU so that

other threads may execute

Starvation
• A nonpreemptive scheduler may cause starvation (runnable threads, ready to be executed, wait

to be executed in the CPU a lot of time, maybe even forever)

• Sometimes, starvation is also called a livelock

Time-Sliced Scheduling
• Time-sliced scheduling – the scheduler allocates a period of time that each thread can use the

CPU

• when that amount of time has elapsed, the scheduler preempts the thread and switches to a

different thread
• Nontime-sliced scheduler – the scheduler does not use elapsed time to determine when to

preempt a thread
• it uses other criteria such as priority or I/O status

Java Scheduling

• Scheduler is preemptive and based on priority of threads

• Uses fixed-priority scheduling:
– Threads are scheduled according to their priority w.r.t. other threads in the ready queue

• The highest priority runnable thread is always selected for execution above lower priority threads

• When multiple threads have equally high priorities, only one of those threads is guaranteed to be

executing
• Java threads are guaranteed to be preemptive-but not time sliced

Introduction to BIG DATA

 13

Thread Priority

• Every thread has a priority

• When a thread is created, it inherits the priority of the thread that created it
• The priority values range from 1 to 10, in increasing priority
• The priority can be adjusted subsequently using the setPriority() method

• The priority of a thread may be obtained using getPriority()
• Priority constants are defined:

• MIN_PRIORITY=1
• MAX_PRIORITY=10
• NORM_PRIORITY=5

• Thread implementation in Java is actually based on operating system support

Some Windows operating systems support only 7 priority levels, so different levels in Java may actually be

mapped to the same operating system level

Daemon Threads

• Daemon threads are “background” threads, that provide services to other threads, e.g., the garbage

collection thread

• The Java VM will not exit if non-Daemon threads are executing
• The Java VM will exit if only Daemon threads are executing
• Daemon threads die when the Java VM exits

Multithreading Client-Server

• Refer next section 5. Simple Client Server Programming Using Java ,example-2

Concurrency

• An object in a program can be changed by more than one thread

Race Condition

• A race condition – the outcome of a program is affected by the order in which the program's
threads are allocated CPU time

• Two threads are simultaneously modifying a single object
• Both threads “race” to store their value

Race Condition Example

Monitors

• Each object has a “monitor” that is a token used to determine which application thread has control
of a particular object instance

Introduction to BIG DATA

 14

• In execution of a synchronized method (or block), access to the object monitor must be gained
before the execution

• Access to the object monitor is queued

• Entering a monitor is also referred to as locking the monitor, or acquiring ownership of the
monitor

• If a thread A tries to acquire ownership of a monitor and a different thread has already entered the
monitor, the current thread (A) must wait until the other thread leaves the monitor

Critical Section

• The synchronized methods define critical sections

• Execution of critical sections is mutually exclusive.

Thread Synchronization

• We need to synchronized between transactions, for example, the consumer-producer scenario

• Allows two threads to cooperate

• Based on a single shared lock object
– Marge put a cookie wait and notify Homer
– Homer eat a cookie wait and notify Marge

• Marge put a cookie wait and notify Homer
• Homer eat a cookie wait and notify Marge

The wait() Method

• The wait() method is part of the java.lang.Object interface

• It requires a lock on the object’s monitor to execute
• It must be called from a synchronized method, or from a synchronized segment of code.

• wait() causes the current thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object

• Upon call for wait(), the thread releases ownership of this monitor and waits until another thread
notifies the waiting threads of the object

• wait() is also similar to yield()

• Both take the current thread off the execution stack and force it to be rescheduled
• However, wait() is not automatically put back into the scheduler queue

• notify() must be called in order to get a thread back into the scheduler’s queue

Consumer
synchronized (lock) {
 while (!resourceAvailable()) {
 lock.wait();
 }
 consumeResource();
}

Producer
produceResource();
synchronized (lock) {
 lock.notifyAll();
}

Introduction to BIG DATA

 15

Wait/Notify Sequence

4. SOCKETS

What Is a Socket?

Normally, a server runs on a specific computer and has a socket that is bound to a specific port number.
The server just waits, listening to the socket for a client to make a connection request.

On the client-side: The client knows the hostname of the machine on which the server is running and the
port number on which the server is listening. To make a connection request, the client tries to rendezvous
with the server on the server's machine and port. The client also needs to identify itself to the server so it
binds to a local port number that it will use during this connection. This is usually assigned by the system.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket
bound to the same local port and also has its remote endpoint set to the address and port of the client. It
needs a new socket so that it can continue to listen to the original socket for connection requests while
tending to the needs of the connected client.

On the client side, if the connection is accepted, a socket is successfully created and the client can use the
socket to communicate with the server.

The client and server can now communicate by writing to or reading from their sockets.

Definition:

A socket is one endpoint of a two-way communication link between two programs running on the network.
A socket is bound to a port number so that the TCP layer can identify the application that data is destined
to be sent to.

Introduction to BIG DATA

 16

An endpoint is a combination of an IP address and a port number. Every TCP connection can be uniquely
identified by its two endpoints. That way you can have multiple connections between your host and the
server.

Socket class

The Socket class can be used to create a socket.

Important methods

Method Description

1) public InputStream getInputStream() returns the InputStream attached with this socket.

2) public OutputStream getOutputStream() returns the OutputStream attached with this socket.

3) public synchronized void close() closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish
communication with the clients.

Important methods

Method Description

1) public Socket accept()
returns the socket and establish a connection between server and

client.

2) public synchronized void

close()
closes the server socket.

Example of Java Socket Programming

• Refer next section 5. Simple Client Server Programming Using Java

5. SIMPLE CLIENT SERVER PROGRAMMING USING JAVA

Let's see a simple of java socket programming in which client sends a text and server receives it.

File: MyServer.java

1. import java.io.*;
2. import java.net.*;
3. public class MyServer {
4. public static void main(String[] args){
5. try{

Introduction to BIG DATA

 17

6. ServerSocket ss=new ServerSocket(6666);
7. Socket s=ss.accept();//establishes connection
8. DataInputStream dis=new DataInputStream(s.getInputStream());
9. String str=(String)dis.readUTF();
10. System.out.println("message= "+str);
11. ss.close();
12. }catch(Exception e){System.out.println(e);}
13. }
14. }

File: MyClient.java

1. import java.io.*;
2. import java.net.*;
3. public class MyClient {
4. public static void main(String[] args) {
5. try{
6. Socket s=new Socket("localhost",6666);
7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());
8. dout.writeUTF("Hello Server");
9. dout.flush();
10. dout.close();
11. s.close();
12. }catch(Exception e){System.out.println(e);}
13. }
14. }

To execute this program open two command prompts and execute each program at each
command prompt as displayed in the below figure.

After running the client application, a message will be displayed on the server console.

Example-2: Client Server Multithread programming

Server

import java.net.*;import java.io.*;
class HelloServer {
 public static void main(String[] args)
{
 int port = Integer.parseInt(args[0]);
 try

Introduction to BIG DATA

 18

 {
 ServerSocket server = new ServerSocket(port);
 }
 catch (IOException ioe)
 {
 System.err.println(“Couldn't run “ + “server on port “ + port);
 return;
 }
while(true)
{
 try {
 Socket connection = server.accept();
 ConnectionHandler handler = new ConnectionHandler(connection);
 new Thread(handler).start();
 } catch (IOException ioe1) { }
}

Connection Handler
// Handles a connection of a client to an HelloServer.
// Talks with the client in the 'hello' protocol
class ConnectionHandler implements Runnable
{

 // The connection with the client
 private Socket connection;
 public ConnectionHandler(Socket connection)
 {
 this.connection = connection;
 }
public void run()
{
 try {
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
 PrintWriter writer = new PrintWriter(new OutputStreamWriter(
 connection.getOutputStream()));

 String clientName = reader.readLine();
 writer.println(“Hello “ + clientName);
 writer.flush();
 } catch (IOException ioe) {}
 }

}

Client side

import java.net.*; import java.io.*;
// A client of an HelloServer
class HelloClient {
 public static void main(String[] args)
 {

 String hostname = args[0];
 int port = Integer.parseInt(args[1]);
 Socket connection = null;
 try
 {

Introduction to BIG DATA

 19

 connection = new Socket(hostname, port);
 }
 catch (IOException ioe)
 {
 System.err.println("Connection failed");
 return;
 }
 try
 {
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
 PrintWriter writer = new PrintWriter(new OutputStreamWriter(
 connection.getOutputStream()));
 writer.println(args[2]); // client name
 String reply = reader.readLine();
 System.out.println("Server reply: "+reply);
 writer.flush();
 }
catch (IOException ioe1) { }

}

6. Difficulties In Developing Distributed Programs For Large Scale

Clusters

Designing and implementing a distributed program for the Large Scale Clusters involves more than just
sending and receiving messages and deciding upon the computational and architectural models. While all
these are extremely important, they do not reflect the whole story of developing programs for the
Distributed Programs For Large Scale Clusters.
Some Difficulties In Developing Distributed Programs For Large Scale Clusters are:

1. Heterogeneity
2. Scalability
3. Communication
4. Synchronization
5. fault-tolerance and
6. Security and privacy:
7. scheduling
8. Openness and Extensibility
9. Transparency

1 Heterogeneity

• distributed programs must be designed in a way that masks the heterogeneity of the underlying
hardware, networks, OSs, and the programming languages

• Another serious problem that requires a great deal of attention from distributed programmers is
performance variation.

• Performance variation entails that running the same distributed program on the same cluster twice
can result in largely different execution times.

• Clearly, this can create tricky load-imbalance and subsequently degrade overall performance

Introduction to BIG DATA

 20

2. Scalability

• A distributed program is said to be scalable if it remains effective when the quantities of users, data
and resources are increased significantly

• Requires tens and hundreds of thousands of machines to maintain performance and load

3. Communication

• Distributed systems are composed of networked computers that can communicate by explicitly
passing messages or implicitly accessing shared memories.

• Even with distributed shared memory systems, messages are internally passed between machines,
yet in a manner that is totally transparent to users.

• Distributed systems such as the Big Data rely heavily on the underlying network to deliver
messages rapidly enough to destination entities for three main reasons, performance, cost and
quality of service (QoS).

• Specifically, faster delivery of messages entails minimized execution times, reduced costs and
higher QoS, especially for audio and video applications.

• Communication is at the heart of the Large Scale Clusters and is one of its major bottlenecks.

4. Synchronization

• Distributed tasks should be allowed to simultaneously operate on shared data without corrupting
data or causing any inconsistency

• Race-conditions whereby two tasks might try to modify data on a shared edge at the same time,
resulting in a corrupted value.

• Wide use of semaphores, locks and barriers

• Avoiding the deadlock and practicing mutual exclusions are need to apply for synchronizing the
data

5. Fault-tolerance
• The ability to tolerate faults in software system is required in applications like nuclear plant,

Space missions, medical equipments etc.

• Different fault injection techniques are used for fault tolerance by injecting faults in the system
under test.

6. Security and privacy:

• How to apply the security policies to the interdependent system is a great issue in distributed
system. Since distributed systems deal with sensitive data and information so the system must
have a strong security and privacy measurement.

• Protection of distributed system assets, including base resources, storage, communications and
user-interface I/O as well as higher-level composites of these resources, like processes, files,
messages, display windows and more complex objects, are important issues in distributed system

7.Scheduling:

• Focuses on Scheduling problems in homogeneous and heterogeneous parallel distributed systems.

• The performance of distributed systems are affected by Broadcast/multicast processing and
required to develop a delivering procedure that completes the processing in minimum time.

8.Openness and Extensibility:

• Interfaces should be separated and publicly available to enable easy extensions to existing
components and add new components

9.Transparency:

• Transparency means up to what extent the distributed system program should appear to the user
as a single system? Distributed system must be designed to hide the complexity of the system to a
greater extent.

Introduction to BIG DATA

 21

7. Introduction to cloud computing

Cloud computing is a form of Internet-based computing that provides shared computer processing
resources and data to computers and other devices on demand.

Characteristics

Cloud computing has a variety of characteristics, with the main ones being:

Shared Infrastructure
- Uses a virtualized software model, enabling the sharing of physical services, storage, and

networking capabilities.
- The cloud infrastructure, regardless of deployment model, seeks to make the most of the

available infrastructure across a number of users.

Dynamic Provisioning

- Allows for the provision of services based on current demand requirements. This is done
automatically using software automation, enabling the expansion and contraction of service
capability, as needed. This dynamic scaling needs to be done while maintaining high levels
of reliability and security

Network Access
- Needs to be accessed across the internet from a broad range of devices such as PCs, laptops,

and mobile devices, using standards-based APIs (for example, ones based on HTTP).
- Deployments of services in the cloud include everything from using business applications

to the latest application on the newest smartphones.
Managed Metering

- Uses metering for managing and optimizing the service and to provide reporting and billing
information.

- In this way, consumers are billed for services according to how much they have actually
used during the billing period.

Service Models

Once a cloud is established, how its cloud computing services are deployed in terms of business models
can differ depending on requirements. The primary service models being deployed (see Figure 1) are
commonly known as:
• Software as a Service (SaaS)

- Consumers purchase the ability to access and use an application or service that is hosted in the
cloud.

- A benchmark example of this is Salesforce.com, as discussed previously, where necessary
information for the interaction between the consumer and the service is hosted as part of the
service in the cloud.

- Also, Microsoft is expanding its involvement in this area, and as part of the cloud computing
option for Microsoft Office 2010, its Office Web Apps are available to Office volume licensing
customers and Office Web App subscriptions through its cloud-based Online Services.

• Platform as a Service (PaaS)
- Consumers purchase access to the platforms, enabling them to deploy their own software and

applications in the cloud. The operating systems and network access are not managed by the
consumer, and there might be constraints as to which applications can be deployed.

• Infrastructure as a Service (IaaS)
- Consumers control and manage the systems in terms of the operating systems, applications,

storage, and network connectivity, but do not themselves control the cloud infrastructure.

Introduction to BIG DATA

 22

Also known are the various subsets of these models that may be related to a particular industry or market.
Communications as a Service (CaaS) is one such subset model used to describe hosted IP telephony
services. Along with the move to CaaS is a shift to more IP-centric communications and more SIP trunking
deployments. With IP and SIP in place, it can be as easy to have the PBX in the cloud as it is to have it on the
premise. In this context, CaaS could be seen as a subset of SaaS.

Deployment Models

Deploying cloud computing can differ depending on requirements, and the following four deployment
models have been identified, each with specific characteristics that support the needs of the services
and users of the clouds in particular ways (see Figure 2).

• Private Cloud
- The cloud infrastructure has been deployed, and is maintained and operated for a specific

organization. The operation may be in-house or with a third party on the premises.
• Community Cloud

- The cloud infrastructure is shared among a number of organizations with similar interests and
requirements.

- This may help limit the capital expenditure costs for its establishment as the costs are shared
among the organizations. The operation may be in-house or with a third party on the premises.

• Public Cloud
- The cloud infrastructure is available to the public on a commercial basis by a cloud service

provider. This enables a consumer to develop and deploy a service in the cloud with very little
financial outlay compared to the capital expenditure requirements normally associated with
other deployment options.

Introduction to BIG DATA

 23

• Hybrid Cloud
- The cloud infrastructure consists of a number of clouds of any type, but the clouds have the

ability through their interfaces to allow data and/or applications to be moved from one cloud
to another. This can be a combination of private and public clouds that support the
requirement to retain some data in an organization, and also the need to offer services in the
cloud

 Benefits

The following are some of the possible benefits for those who offer cloud computing-based
services and applications:

• Cost Savings
— Companies can reduce their capital expenditures and use operational expenditures for
increasing their computing capabilities. This is a lower barrier to entry and also requires fewer in-
house IT resources to provide system support.

• Scalability/Flexibility
— Companies can start with a small deployment and grow to a large deployment fairly rapidly, and
then scale back if necessary. Also, the flexibility of cloud computing allows companies to use extra
resources at peak times, enabling them to satisfy consumer demands.

• Reliability
— Services using multiple redundant sites can support business continuity and disaster recovery.

• Maintenance
— Cloud service providers do the system maintenance, and access is through APIs that do not
require application installations onto PCs, thus further reducing maintenance requirements.

• Mobile Accessible
— Mobile workers have increased productivity due to systems accessible in an infrastructure
available from anywhere.

Challenges

The following are some of the notable challenges associated with cloud computing, and although some of
these may cause a slowdown when delivering more services in the cloud, most also can provide
opportunities, if resolved with due care and attention in the planning stages.

• Security and Privacy
— Perhaps two of the more “hot button” issues surrounding cloud computing relate to storing and
securing data, and monitoring the use of the cloud by the service providers. These issues are
generally attributed to slowing the deployment of cloud services. These challenges can be
addressed, for example, by storing the information internal to the organization, but allowing it to
be used in the cloud. For this to occur, though, the security mechanisms between organization and
the cloud need to be robust and a Hybrid cloud could support such a deployment.

• Lack of Standards
— Clouds have documented interfaces; however, no standards are associated with these, and thus
it is unlikely that most clouds will be interoperable. The Open Grid Forum is developing an Open
Cloud Computing Interface to resolve this issue and the Open Cloud Consortium is working on
cloud computing standards and practices. The findings of these groups will need to mature, but it is
not known whether they will address the needs of the people deploying the services and the
specific interfaces these services need. However, keeping up to date on the latest standards as they
evolve will allow them to be leveraged, if applicable.

• Continuously Evolving

— User requirements are continuously evolving, as are the requirements for interfaces,
networking, and storage. This means that a “cloud,” especially a public one, does not remain static
and is also continuously evolving.

INTRODUCTION TO BIG DATA UNIT-2

 1

UNIT-2

1. Distributed File systems leading to Hadoop file system,

2. introduction,

3. Using HDFS,

4. Hadoop Architecture,

5. Internals of Hadoop File Systems.

1. Distributed File systems leading to Hadoop file system

A distributed file system is mainly designed to hold a large amount of data and provide access to this data to many

clients distributed across a network. But a distributed file system has got many limitations.

1. The files reside on on single machine.

2. It does not provide any reliability guarantees if that machine goes down, this means that it will only store as

much information as can be stored in one machine.

3. Finally, as all the data is stored on a single machine, all the clients must go to this machine to retrieve their

data. This can overload the server if a large number of clients must be handled. Clients must also always

copy the data to their local machines before they can operate on it.

To overcome above drawbacks, there came a file system — HDFS (Hadoop Distributed File System.)

1. HDFS is designed to store a very large amount of information (terabytes or petabytes). This requires

spreading the data across a large number of machines. It also supports much larger file sizes than DFS.

2. HDFS should store data reliably. If individual machines in the cluster malfunction, data should still be

available.

3. HDFS should provide fast, scalable access to this information. It should be possible to serve a larger

number of clients by simply adding more machines to the cluster.

4. HDFS should integrate well with Hadoop MapReduce, allowing data to be read and computed upon locally

when possible.

But, HDFS has also got some limitations.

1. HDFS is optimized to provide streaming read performance; this comes at the expense of random seek times

to arbitrary positions in files.

2. Data will be written to the HDFS once and then read several times; updates to files after they have already

been closed are not supported.

3. Due to the large size of files, and the sequential nature of reads, the system does not provide a mechanism

for local caching of data.

4. Individual machines are assumed to fail on a frequent basis, both permanently and intermittently. The

cluster must be able to withstand the complete failure of several machines, possibly many happening at the

same time.

G B Gangadhar

INTRODUCTION TO BIG DATA UNIT-2

 2

2. Introduction

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity

hardware. It has many similarities with existing distributed file systems. However, the differences from other

distributed file systems are significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to application data and is suitable for applications that have large

data sets. HDFS also makes applications available to parallel processing.

HDFS Goals

1. Hardware Failure

Hardware failure is the norm rather than the exception. An HDFS instance may consist of hundreds or

thousands of server machines, each storing part of the file system’s data. The fact that there are a huge

number of components and that each component has a non-trivial probability of failure means that some

component of HDFS is always non-functional. Therefore, detection of faults and quick, automatic recovery

from them is a core architectural goal of HDFS.

2. Streaming Data Access

Applications that run on HDFS need streaming access to their data sets. They are not general purpose

applications that typically run on general purpose file systems. HDFS is designed more for batch processing

rather than interactive use by users. The emphasis is on high throughput of data access rather than low

latency of data access. POSIX imposes many hard requirements that are not needed for applications that are

targeted for HDFS. POSIX semantics in a few key areas has been traded to increase data throughput rates.

3. Large Data Sets

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to terabytes in size.

Thus, HDFS is tuned to support large files. It should provide high aggregate data bandwidth and scale to

hundreds of nodes in a single cluster. It should support tens of millions of files in a single instance.

4. Simple Coherency Model

HDFS applications need a write-once-read-many access model for files. A file once created, written, and

closed need not be changed. This assumption simplifies data coherency issues and enables high throughput

data access. A MapReduce application or a web crawler application fits perfectly with this model. There is

a plan to support appending-writes to files in the future.

5. “Moving Computation is Cheaper than Moving Data”

A computation requested by an application is much more efficient if it is executed near the data it operates

on. This is especially true when the size of the data set is huge. This minimizes network congestion and

increases the overall throughput of the system. The assumption is that it is often better to migrate the

computation closer to where the data is located rather than moving the data to where the application is

running. HDFS provides interfaces for applications to move themselves closer to where the data is located.

6. Portability Across Heterogeneous Hardware and Software Platforms

HDFS has been designed to be easily portable from one platform to another. This facilitates widespread

adoption of HDFS as a platform of choice for a large set of applications.

INTRODUCTION TO BIG DATA UNIT-2

 3

3. Using HDFS

Features of Hadoop HDFS

1 Fault Tolerance

Fault tolerance in HDFS refers to the working strength of a system in unfavorable conditions and how that

system can handle such situations. HDFS is highly fault-tolerant, in HDFS data is divided into blocks and multiple

copies of blocks are created on different machines in the cluster (this replica creation is configurable). So whenever

if any machine in the cluster goes down, then a client can easily access their data from the other machine which

contains the same copy of data blocks. HDFS also maintains the replication factor by creating a replica of blocks of

data on another rack. Hence if suddenly a machine fails, then a user can access data from other slaves present in

another rack.

2. High Availability

HDFS is a highly available file system, data gets replicated among the nodes in the HDFS cluster by

creating a replica of the blocks on the other slaves present in HDFS cluster. Hence whenever a user wants to access

his data, they can access their data from the slaves which contains its blocks and which is available on the nearest

node in the cluster. And during unfavorable situations like a failure of a node, a user can easily access their data

from the other nodes. Because duplicate copies of blocks which contain user data are created on the other nodes

present in the HDFS cluster.

3. Data Reliability

HDFS is a distributed file system which provides reliable data storage. HDFS can store data in the range of

100s of petabytes. It stores data reliably on a cluster of nodes. HDFS divides the data into blocks and these blocks

are stored on nodes present in HDFS cluster. It stores data reliably by creating a replica of each and every block

present on the nodes present in the cluster and hence provides fault tolerance facility. If node containing data goes

down, then a user can easily access that data from the other nodes which contain a copy of same data in the HDFS

cluster. HDFS by default creates 3 copies of blocks containing data present in the nodes in HDFS cluster. Hence

data is quickly available to the users and hence user does not face the problem of data loss. Hence HDFS is highly

reliable.

4. Replication

Data Replication is one of the most important and unique features of Hadoop HDFS. In HDFS replication

of data is done to solve the problem of data loss in unfavorable conditions like crashing of a node, hardware failure,

and so on. As data is replicated across a number of machines in the cluster by creating blocks. The process of

replication is maintained at regular intervals of time by HDFS and HDFS keeps creating replicas of user data on

different machines present in the cluster. So whenever any machine in the cluster gets crashed, the user can access

their data from other machines which contain the blocks of that data. Hence there is no possibility of losing of user

data.

5. Scalability

As HDFS stores data on multiple nodes in the cluster, when requirements increase we can scale the cluster.

There is two scalability mechanisms available: Vertical scalability – add more resources (CPU, Memory, Disk) on

the existing nodes of the cluster. Another way is horizontal scalability – Add more machines in the cluster. The

horizontal way is preferred as we can scale the cluster from 10s of nodes to 100s of nodes on the fly without any

downtime.

INTRODUCTION TO BIG DATA UNIT-2

 4

6. Distributed Storage

In HDFS all the features are achieved via distributed storage and replication. In HDFS data is stored in

distributed manner across the nodes in HDFS cluster. In HDFS data is divided into blocks and is stored on the

nodes present in HDFS cluster. And then replicas of each and every block are created and stored on other nodes

present in the cluster. So if a single machine in the cluster gets crashed we can easily access our data from the other

nodes which contain its replica.

4. Hadoop Architecture

Hadoop HDFS has a Master/Slave architecture in which Master is NameNode and Slave is DataNode. HDFS

Architecture consists of single NameNode and all the other nodes are DataNodes.

1. HDFS NameNode

It is also known as Master node. HDFS Namenode stores meta-data i.e. number of data blocks, replicas

and other details. This meta-data is available in memory in the master for faster retrieval of data.

NameNode maintains and manages the slave nodes, and assigns tasks to them. It should deploy on reliable

hardware as it is the centerpiece of HDFS.

Task of NameNode

• Manage file system namespace.

• Regulates client’s access to files.

• It also executes file system execution such as naming, closing, opening files/directories.

• All DataNodes sends a Heartbeat and block report to the NameNode in the Hadoop cluster. It

ensures that the DataNodes are alive. A block report contains a list of all blocks on a datanode.

• NameNode is also responsible for taking care of the Replication Factor of all the blocks.

Files present in the NameNode metadata are as follows-

FsImage –

It is an “Image file”. FsImage contains the entire filesystem namespace and stored as a file in the

namenode’s local file system. It also contains a serialized form of all the directories and file inodes in the

filesystem. Each inode is an internal representation of file or directory’s metadata.

INTRODUCTION TO BIG DATA UNIT-2

 5

EditLogs –

It contains all the recent modifications made to the file system on the most recent FsImage. Namenode

receives a create/update/delete request from the client. After that this request is first recorded to edits file.

2. HDFS DataNode

It is also known as Slave. In Hadoop HDFS Architecture, DataNode stores actual data in HDFS. It

performs read and write operation as per the request of the client. DataNodes can deploy on commodity

hardware.

Task of DataNode

• Block replica creation, deletion, and replication according to the instruction of Namenode.

• DataNode manages data storage of the system.

• DataNodes send heartbeat to the NameNode to report the health of HDFS. By default, this

frequency is set to 3 seconds.

3. Secondary NameNode

In HDFS, when NameNode starts, first it reads HDFS state from an image file, FsImage. After that, it

applies edits from the edits log file. NameNode then writes new HDFS state to the FsImage. Then it starts

normal operation with an empty edits file. At the time of start-up, NameNode merges FsImage and edits

files, so the edit log file could get very large over time. A side effect of a larger edits file is that next restart

of Namenode takes longer.

Secondary Namenode solves this issue. Secondary NameNode downloads the FsImage and EditLogs from

the NameNode. And then merges EditLogs with the FsImage (FileSystem Image). It keeps edits log size

within a limit. It stores the modified FsImage into persistent storage. And we can use it in the case of

NameNode failure.

Secondary NameNode performs a regular checkpoint in HDFS.

4. Checkpoint Node

The Checkpoint node is a node which periodically creates checkpoints of the namespace. Checkpoint

Node in Hadoop first downloads FsImage and edits from the Active Namenode. Then it merges them

(FsImage and edits) locally, and at last, it uploads the new image back to the active NameNode. It stores the

latest checkpoint in a directory that has the same structure as the Namenode’s directory. This permits the

checkpointed image to be always available for reading by the namenode if necessary.

5. Backup Node

A Backup node provides the same checkpointing functionality as the Checkpoint node. In Hadoop, Backup

node keeps an in-memory, up-to-date copy of the file system namespace. It is always synchronized with the

active NameNode state. The backup node in HDFS Architecture does not need to download FsImage and

edits files from the active NameNode to create a checkpoint. It already has an up-to-date state of the

namespace state in memory. The Backup node checkpoint process is more efficient as it only needs to save

the namespace into the local FsImage file and reset edits. NameNode supports one Backup node at a time.

6. The File System Namespace

HDFS supports a traditional hierarchical file organization. A user or an application can create directories

and store files inside these directories. The file system namespace hierarchy is similar to most other existing

INTRODUCTION TO BIG DATA UNIT-2

 6

file systems; one can create and remove files, move a file from one directory to another, or rename a file.

HDFS does not yet implement user quotas. HDFS does not support hard links or soft links. However, the

HDFS architecture does not preclude implementing these features.

The NameNode maintains the file system namespace. Any change to the file system namespace or its

properties is recorded by the NameNode. An application can specify the number of replicas of a file that

should be maintained by HDFS. The number of copies of a file is called the replication factor of that file.

This information is stored by the NameNode.

5. Internals of Hadoop File Systems

Data Replication

HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a

sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are

replicated for fault tolerance. The block size and replication factor are configurable per file. An application

can specify the number of replicas of a file. The replication factor can be specified at file creation time and

can be changed later. Files in HDFS are write-once and have strictly one writer at any time.

The NameNode makes all decisions regarding replication of blocks. It periodically receives a Heartbeat and

a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode

is functioning properly. A Blockreport contains a list of all blocks on a DataNode.

Replica Placement: The First Baby Steps

The placement of replicas is critical to HDFS reliability and performance. Optimizing replica placement

distinguishes HDFS from most other distributed file systems. This is a feature that needs lots of tuning and

experience. The purpose of a rack-aware replica placement policy is to improve data reliability, availability,

and network bandwidth utilization. The current implementation for the replica placement policy is a first

effort in this direction. The short-term goals of implementing this policy are to validate it on production

systems, learn more about its behavior, and build a foundation to test and research more sophisticated

policies.

Large HDFS instances run on a cluster of computers that commonly spread across many racks.

Communication between two nodes in different racks has to go through switches. In most cases, network

INTRODUCTION TO BIG DATA UNIT-2

 7

bandwidth between machines in the same rack is greater than network bandwidth between machines in

different racks.

The NameNode determines the rack id each DataNode belongs to via the process outlined in Hadoop Rack

Awareness. A simple but non-optimal policy is to place replicas on unique racks. This prevents losing data

when an entire rack fails and allows use of bandwidth from multiple racks when reading data. This policy

evenly distributes replicas in the cluster which makes it easy to balance load on component failure.

However, this policy increases the cost of writes because a write needs to transfer blocks to multiple racks.

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica

on one node in the local rack, another on a node in a different (remote) rack, and the last on a different node

in the same remote rack. This policy cuts the inter-rack write traffic which generally improves write

performance. The chance of rack failure is far less than that of node failure; this policy does not impact data

reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when

reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas

of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of

replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy

improves write performance without compromising data reliability or read performance.

The current, default replica placement policy described here is a work in progress.

Replica Selection

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read request from a

replica that is closest to the reader. If there exists a replica on the same rack as the reader node, then that

replica is preferred to satisfy the read request. If angg/ HDFS cluster spans multiple data centers, then a

replica that is resident in the local data center is preferred over any remote replica.

Safemode

On startup, the NameNode enters a special state called Safemode. Replication of data blocks does not occur

when the NameNode is in the Safemode state. The NameNode receives Heartbeat and Blockreport

messages from the DataNodes. A Blockreport contains the list of data blocks that a DataNode is hosting.

Each block has a specified minimum number of replicas. A block is considered safely replicated when the

minimum number of replicas of that data block has checked in with the NameNode. After a configurable

percentage of safely replicated data blocks checks in with the NameNode (plus an additional 30 seconds),

the NameNode exits the Safemode state. It then determines the list of data blocks (if any) that still have

fewer than the specified number of replicas. The NameNode then replicates these blocks to other

DataNodes.

The Persistence of File System Metadata

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction log called the

EditLog to persistently record every change that occurs to file system metadata. For example, creating a

new file in HDFS causes the NameNode to insert a record into the EditLog indicating this. Similarly,

changing the replication factor of a file causes a new record to be inserted into the EditLog. The NameNode

uses a file in its local host OS file system to store the EditLog. The entire file system namespace, including

the mapping of blocks to files and file system properties, is stored in a file called the FsImage. The FsImage

is stored as a file in the NameNode’s local file system too.

The NameNode keeps an image of the entire file system namespace and file Blockmap in memory. This

key metadata item is designed to be compact, such that a NameNode with 4 GB of RAM is plenty to

support a huge number of files and directories. When the NameNode starts up, it reads the FsImage and

EditLog from disk, applies all the transactions from the EditLog to the in-memory representation of the

FsImage, and flushes out this new version into a new FsImage on disk. It can then truncate the old EditLog

INTRODUCTION TO BIG DATA UNIT-2

 8

because its transactions have been applied to the persistent FsImage. This process is called a checkpoint. In

the current implementation, a checkpoint only occurs when the NameNode starts up. Work is in progress to

support periodic checkpointing in the near future.

The DataNode stores HDFS data in files in its local file system. The DataNode has no knowledge about

HDFS files. It stores each block of HDFS data in a separate file in its local file system. The DataNode does

not create all files in the same directory. Instead, it uses a heuristic to determine the optimal number of files

per directory and creates subdirectories appropriately. It is not optimal to create all local files in the same

directory because the local file system might not be able to efficiently support a huge number of files in a

single directory. When a DataNode starts up, it scans through its local file system, generates a list of all

HDFS data blocks that correspond to each of these local files and sends this report to the NameNode: this is

the Blockreport.

The Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client establishes a

connection to a configurable TCP port on the NameNode machine. It talks the ClientProtocol with the

NameNode. The DataNodes talk to the NameNode using the DataNode Protocol. A Remote Procedure Call

(RPC) abstraction wraps both the Client Protocol and the DataNode Protocol. By design, the NameNode

never initiates any RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients.

Robustness

The primary objective of HDFS is to store data reliably even in the presence of failures. The three common

types of failures are NameNode failures, DataNode failures and network partitions.

Data Disk Failure, Heartbeats and Re-Replication

Each DataNode sends a Heartbeat message to the NameNode periodically. A network partition can cause a

subset of DataNodes to lose connectivity with the NameNode. The NameNode detects this condition by the

absence of a Heartbeat message. The NameNode marks DataNodes without recent Heartbeats as dead and

does not forward any new IO requests to them. Any data that was registered to a dead DataNode is not

available to HDFS any more. DataNode death may cause the replication factor of some blocks to fall below

their specified value. The NameNode constantly tracks which blocks need to be replicated and initiates

replication whenever necessary. The necessity for re-replication may arise due to many reasons: a

DataNode may become unavailable, a replica may become corrupted, a hard disk on a DataNode may fail,

or the replication factor of a file may be increased.

The time-out to mark DataNodes dead is conservatively long (over 10 minutes by default) in order to avoid

replication storm caused by state flapping of DataNodes. Users can set shorter interval to mark DataNodes

as stale and avoid stale nodes on reading and/or writing by configuration for performance sensitive

workloads.

Cluster Rebalancing

The HDFS architecture is compatible with data rebalancing schemes. A scheme might automatically move

data from one DataNode to another if the free space on a DataNode falls below a certain threshold. In the

event of a sudden high demand for a particular file, a scheme might dynamically create additional replicas

and rebalance other data in the cluster. These types of data rebalancing schemes are not yet

implemented.

INTRODUCTION TO BIG DATA UNIT-2

 9

Data Integrity

It is possible that a block of data fetched from a DataNode arrives corrupted. This corruption can occur

because of faults in a storage device, network faults, or buggy software. The HDFS client software

implements checksum checking on the contents of HDFS files. When a client creates an HDFS file, it

computes a checksum of each block of the file and stores these checksums in a separate hidden file in the

same HDFS namespace. When a client retrieves file contents it verifies that the data it received from each

DataNode matches the checksum stored in the associated checksum file. If not, then the client can opt to

retrieve that block from another DataNode that has a replica of that block.

Metadata Disk Failure

The FsImage and the EditLog are central data structures of HDFS. A corruption of these files can cause the

HDFS instance to be non-functional. For this reason, the NameNode can be configured to support

maintaining multiple copies of the FsImage and EditLog. Any update to either the FsImage or EditLog

causes each of the FsImages and EditLogs to get updated synchronously. This synchronous updating of

multiple copies of the FsImage and EditLog may degrade the rate of namespace transactions per second

that a NameNode can support. However, this degradation is acceptable because even though HDFS

applications are very data intensive in nature, they are not metadata intensive. When a NameNode restarts,

it selects the latest consistent FsImage and EditLog to use.

Another option to increase resilience against failures is to enable High Availability using multiple

NameNodes either with a shared storage on NFS or using a distributed edit log (called Journal). The latter

is the recommended approach.

Snapshots

Snapshots support storing a copy of data at a particular instant of time. One usage of the snapshot feature

may be to roll back a corrupted HDFS instance to a previously known good point in time.

Data Organization

Data Blocks

HDFS is designed to support very large files. Applications that are compatible with HDFS are those that

deal with large data sets. These applications write their data only once but they read it one or more times

and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics

on files. A typical block size used by HDFS is 128 MB. Thus, an HDFS file is chopped up into 128 MB

chunks, and if possible, each chunk will reside on a different DataNode.

Staging

A client request to create a file does not reach the NameNode immediately. In fact, initially the HDFS

client caches the file data into a local buffer. Application writes are transparently redirected to this local

buffer. When the local file accumulates data worth over one chunk size, the client contacts the NameNode.

The NameNode inserts the file name into the file system hierarchy and allocates a data block for it. The

NameNode responds to the client request with the identity of the DataNode and the destination data block.

Then the client flushes the chunk of data from the local buffer to the specified DataNode. When a file is

closed, the remaining un-flushed data in the local buffer is transferred to the DataNode. The client then tells

the NameNode that the file is closed. At this point, the NameNode commits the file creation operation into

a persistent store. If the NameNode dies before the file is closed, the file is lost.

The above approach has been adopted after careful consideration of target applications that run on HDFS.

These applications need streaming writes to files. If a client writes to a remote file directly without any

client side buffering, the network speed and the congestion in the network impacts throughput considerably.

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html

INTRODUCTION TO BIG DATA UNIT-2

 10

This approach is not without precedent. Earlier distributed file systems, e.g. AFS, have used client side

caching to improve performance. A POSIX requirement has been relaxed to achieve higher performance of

data uploads.

Replication Pipelining

When a client is writing data to an HDFS file, its data is first written to a local buffer as explained in the

previous section. Suppose the HDFS file has a replication factor of three. When the local buffer

accumulates a chunk of user data, the client retrieves a list of DataNodes from the NameNode. This list

contains the DataNodes that will host a replica of that block. The client then flushes the data chunk to the

first DataNode. The first DataNode starts receiving the data in small portions, writes each portion to its

local repository and transfers that portion to the second DataNode in the list. The second DataNode, in turn

starts receiving each portion of the data block, writes that portion to its repository and then flushes that

portion to the third DataNode. Finally, the third DataNode writes the data to its local repository. Thus, a

DataNode can be receiving data from the previous one in the pipeline and at the same time forwarding data

to the next one in the pipeline. Thus, the data is pipelined from one DataNode to the next.

Hadoop HDFS Data Write Operation

i) The HDFS client sends a create request on DistributedFileSystem APIs.

ii) DistributedFileSystem makes an RPC call to the namenode to create a new file in the file system’s namespace.

The namenode performs various checks to make sure that the file doesn’t already exist and that the client has the

permissions to create the file. When these checks pass, then only the namenode makes a record of the new file;

otherwise, file creation fails and the client is thrown an IOException.

iii) The DistributedFileSystem returns a FSDataOutputStream for the client to start writing data to. As the client

writes data, DFSOutputStream splits it into packets, which it writes to an internal queue, called the data queue. The

data queue is consumed by the DataStreamer, whichI is responsible for asking the namenode to allocate new blocks

by picking a list of suitable datanodes to store the replicas.

iv) The list of datanodes form a pipeline, and here we’ll assume the replication level is three, so there are three

nodes in the pipeline. The DataStreamer streams the packets to the first datanode in the pipeline, which stores the

packet and forwards it to the second datanode in the pipeline. Similarly, the second datanode stores the packet and

forwards it to the third (and last) datanode in the pipeline.

INTRODUCTION TO BIG DATA UNIT-2

 11

v) DFSOutputStream also maintains an internal queue of packets that are waiting to be acknowledged by datanodes,

called the ack queue. A packet is removed from the ack queue only when it has been acknowledged by the

datanodes in the pipeline. Datanode sends the acknowledgment once required replicas are created (3 by default).

Similarly, all the blocks are stored and replicated on the different datanodes, the data blocks are copied in parallel.

vi) When the client has finished writing data, it calls close() on the stream.

vii) This action flushes all the remaining packets to the datanode pipeline and waits for acknowledgments before

contacting the namenode to signal that the file is complete. The namenode already knows which blocks the file is

made up of, so it only has to wait for blocks to be minimally replicated before returning successfully.

HDFS Data Read Operation

i) Client opens the file it wishes to read by calling open() on the FileSystem object, which for HDFS is an instance

of DistributedFileSystem.

ii) DistributedFileSystem calls the namenode using RPC to determine the locations of the blocks for the first few

blocks in the file. For each block, the namenode returns the addresses of the datanodes that have a copy of that

block and datanode are sorted according to their proximity to the client.

iii) DistributedFileSystem returns a FSDataInputStream to the client for it to read data from. FSDataInputStream,

thus, wraps the DFSInputStream which manages the datanode and namenode I/O. Client calls read() on the stream.

DFSInputStream which has stored the datanode addresses then connects to the closest datanode for the first block in

the file.

iv) Data is streamed from the datanode back to the client, as a result client can call read() repeatedly on the stream.

When the block ends, DFSInputStream will close the connection to the datanode and then finds the best datanode

for the next block.

v) If the DFSInputStream encounters an error while communicating with a datanode, it will try the next closest one

for that block. It will also remember datanodes that have failed so that it doesn’t needlessly retry them for later

blocks. The DFSInputStream also verifies checksums for the data transferred to it from the datanode. If it finds a

INTRODUCTION TO BIG DATA UNIT-2

 12

corrupt block, it reports this to the namenode before the DFSInputStream attempts to read a replica of the block

from another datanode.

vi) When the client has finished reading the data, it calls close() on the stream

Fault Tolerance in HDFS

As we have discussed HDFS data read and write operations in detail, Now, what happens when one of the machines

i.e. part of the pipeline which has a datanode process running fails. Hadoop has an inbuilt functionality to handle

this scenario (HDFS is fault tolerant). When a datanode fails while data is being written to it, then the following

actions are taken, which are transparent to the client writing the data.

• First, the pipeline is closed, and any packets in the ack queue are added to the front of the data queue so that

datanode that are downstream from the failed node will not miss any packets.

• The current block on the good datanode is given a new identity, which is communicated to the namenode so

that the partial block on the failed datanode will be deleted if the failed datanode recovery later on.

• The datanode that fails is removed from the pipeline, and then the remainder of the block’s data is written

to the two good datanodes in the pipeline.

• The namenode notices that the block is under-replicated, and it arranges for a further replica to be created

on another node. Then it treats the subsequent blocks as normal.

http://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

1

Unit-3

1. Map-Reduce Programming: Developing Distributed Programs and issues

2. why map- reduce and conceptual understanding of Map-Reduce programming

3. Developing Map-Reduce programs in Java

4. setting up the cluster with HDFS and understanding how Map- Reduce works on

HDFS

5. Running simple word count Map-Reduce program on the cluster

6. Additional examples of M-R Programming.

1. DEVELOPING DISTRIBUTED PROGRAMS AND ISSUES

Scalability: Scaling is one of the major issues of Developing Distributed Programs. The scaling issue

consists of dimensions like communication capacity. The program should be designed such that the

capacity may be increased with the increasing demand on the system.

Heterogeneity: It is an important design issue for the distributed programming. The communications

infrastructure consists of channels of different capacities. End-Systems will possess a wide variety of

presentation techniques.

Objects representation and translation: Selecting the best programming models for distributed

objects like CORBA, Java etc. is an important issue.

Resource management: In Developing Distributed Programs, objects consisting of resources are

located on different places. Routing is an issue at the network layer of the distributed system and at

the application layer.

Security and privacy: How to apply the security policies to the interdependent system is a great

issue in Developing Distributed Programs. Since Distributed Programs deal with sensitive data and

information so the program must have a strong security and privacy measurement. Protection of

distributed system assets, including base resources, storage, communications and user-interface I/O

as well as higher-level composites of these resources, like processes, files, messages, display

windows and more complex objects, are important issues in distributed program

Transparency: Transparency means up to what extent the distributed system should appear to the

user as a single system? Distributed program must be designed to hide the complexity of the system

to a greater extent.

Openness: Openness means up to what extent a system be designed using standard protocols to

support Interoperability. It is desired for developers to add new features or replace subsystem in

future. To accomplish this, distributed program must have well defined interfaces.

Quality of Service: How to specify the quality of service given to system users and acceptable level

of quality of service delivered to the users. The quality of service is heavily dependent on the

processes to be allocated to the processors in the system, resource distribution, hardware, adaptability

of the program, network etc. A good performance, availability and reliability are required to reflect

good quality of service.

Failure management: How can failure of the system be detected and repaired.

Synchronization: One of the most important issues that engineers of distributed programs are facing

is synchronizing computations consisting of thousands of components. Current methods of

synchronization like semaphores, monitors, barriers, remote procedure call, object method

invocation, and message passing, do not scale well.

Resource identification: The resources are distributed across various computers and a proper

naming scheme is to be designed for exact reference of the resources.

G B Gangadhar

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

2

Communications: Distributed Systems have become more effective with the advent of Internet but

there are certain requirements for performance, reliability etc. Effective approaches to

communication should be used.

Software Architectures: It reflects the application functionality distributed over the logical

components and across the processors. Selecting the right architecture for an application is required

for better quality of service.

Performance analysis: The Performance analysis of Distributed software program is a great issue. It

is expected that it should be high speed, fault tolerant and cost effective. It is also essential towards

evaluating alternative design to meet the Quality of service. Moreover the ability to estimate the

future performance of a large and complex distributed software program at design time can reduce

the software cost and risk.

Generating a Test Data: Generating a test data to cover the respective test criteria for testing the

component is a difficult task. It becomes more difficult in case of distributed program because the

number of possible paths increases significantly. Test cases must cover the low level elements.

Component selection for testing: Testing distributed components require the services of other

components. When a component is used with other there could be a possibility of deadlocks and race

condition. There may be no error detected when only one client is used because only one thread is

executed but in the case of multithreading the number of clients used for testing the components may

detect the errors.

Test Sequence: The component is to be tested along with other components. What orders should be

followed in testing components? If the components do not follow the layered architectural model,

there could be chances of cycles among the components.

Testing for system scalability and performance: Scalability of conventional test criteria of data is a

major issue in the context of testing. The concept of threading may be used in the components for

improved performance while testing. But using multiple threads is a challenging task in testing.

Redundant testing during integration of component: components are first tested separately. When

the entire program is tested, lots of retesting of component occurs.

Availability of source code: Software components may be developed in house or off- the- shelf.

Depending upon the availability of source code various testing techniques are used for the system

testing.

Heterogeneous languages, platform and Architecture: Different languages may be used for

writing the components of the system. The components may be used on different hardware and

software platform.

Monitoring and control mechanism in testing distributed software: Distributed software system

involves multiple computers on the network. Testing monitoring and control mechanism in

distributed environment is complex compared with centralized software system. Monitoring

Distributed System services are also important for debugging during program development and

required as part of the application itself like process control and automation.

Reproducibility of Events: Reproducibility of events is a challenging task because of concurrent

processing and asynchronous communication occurring in the distributed environment. Moreover the

lack of full control over the environment is another hurdle in this regards.

Deadlocks and Race Conditions: Deadlocks and race conditions are other great issues while

developing distributed programs especially in the context of testing. It becomes more important issue

especially in shared memory multiprocessor environment .

Testing for fault tolerance: The ability to tolerate faults in software system is required in

applications like nuclear plant, Space missions, medical equipments etc. Testing for fault tolerance is

challenging because the fault recovery code hardly gets executed while testing. Different fault

injection techniques are used for fault tolerance by injecting faults in the program under test.

Scheduling issue for distributed program: Focuses on Scheduling problems in homogeneous and

heterogeneous parallel distributed systems. The performance of distributed programs are affected by

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

3

Broadcast/multicast processing and required to develop a delivering procedure that completes the

processing in minimum time.

Controllability and Observability issues : Controllability and observability are two important

issues in testing because they have an effect on the capability of the test system to check the

conformance of an implementation

under test. Controllability is the capability of the Test System to force the Implementation under Test

to receive inputs in a given order.

Distributed Task Allocation: Finding an optimal Task allocation in developing distributed program

is a challenging job keeping in mind the concept of reliability and performance.

2. WHY MAP- REDUCE AND CONCEPTUAL UNDERSTANDING OF MAP-REDUCE
PROGRAMMING

MapReduce is a programming model for writing applications that can process Big Data in

parallel on multiple nodes. MapReduce provides analytical capabilities for analyzing huge volumes

of complex data.

What is Big Data?

Big Data is a collection of large datasets that cannot be processed using traditional computing

techniques. For example, the volume of data Facebook or YouTube need require it to collect and

manage on a daily basis, can fall under the category of Big Data. However, Big Data is not only

about scale and volume, it also involves one or more of the following aspects − Velocity, Variety,

Volume, and Complexity.

Why MapReduce?

Traditional Enterprise Systems normally have a centralized server to store and process data. The

following illustration depicts a schematic view of a traditional enterprise system. Traditional model is

certainly not suitable to process huge volumes of scalable data and cannot be accommodated by

standard database servers. Moreover, the centralized system creates too much of a bottleneck while

processing multiple files simultaneously.

Google solved this bottleneck issue using an algorithm called MapReduce. MapReduce divides a task

into small parts and assigns them to many computers. Later, the results are collected at one place and

integrated to form the result dataset.

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

4

MapReduce programs work in two phases:

1. Map phase

2. Reduce phase.

Input to each phase are key-value pairs. In addition, every programmer needs to specify two

functions: map function and reduce function.

The whole process goes through three phase of execution namely,

How MapReduce works

Lets understand this with an example –

Consider you have following input data for your MapReduce Program

Welcome to Hadoop Class

Hadoop is good

Hadoop is bad

The final output of the MapReduce task is

bad 1

Class 1

good 1

Hadoop 3

is 2

to 1

Welcome 1

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

5

The data goes through following phases

Input Splits:

Input to a MapReduce job is divided into fixed-size pieces called input splits Input split is a chunk of

the input that is consumed by a single map

Mapping

This is very first phase in the execution of map-reduce program. In this phase data in each split is

passed to a mapping function to produce output values. In our example, job of mapping phase is to

count number of occurrences of each word from input splits (more details about input-split is given

below) and prepare a list in the form of <word, frequency>

Shuffling

This phase consumes output of Mapping phase. Its task is to consolidate the relevant records from

Mapping phase output. In our example, same words are clubed together along with their respective

frequency.

Reducing

In this phase, output values from Shuffling phase are aggregated. This phase combines values from

Shuffling phase and returns a single output value. In short, this phase summarizes the complete

dataset.

In our example, this phase aggregates the values from Shuffling phase i.e., calculates total

occurrences of each words.

The overall process in detail

 One map task is created for each split which then executes map function for each record in

the split.

 It is always beneficial to have multiple splits, because time taken to process a split is small

as compared to the time taken for processing of the whole input. When the splits are smaller,

the processing is better load balanced since we are processing the splits in parallel.

 However, it is also not desirable to have splits too small in size. When splits are too small,

the overload of managing the splits and map task creation begins to dominate the total job

execution time.

 For most jobs, it is better to make split size equal to the size of an HDFS block (which is 64

MB, by default).

 Execution of map tasks results into writing output to a local disk on the respective node and

not to HDFS.

 Reason for choosing local disk over HDFS is, to avoid replication which takes place in case

of HDFS store operation.

 Map output is intermediate output which is processed by reduce tasks to produce the final

output.

 Once the job is complete, the map output can be thrown away. So, storing it in HDFS with

replication becomes overkill.

 In the event of node failure before the map output is consumed by the reduce task, Hadoop

reruns the map task on another node and re-creates the map output.

 Reduce task don't work on the concept of data locality. Output of every map task is fed to

the reduce task. Map output is transferred to the machine where reduce task is running.

 On this machine the output is merged and then passed to the user defined reduce function.

 Unlike to the map output, reduce output is stored in HDFS (the first replica is stored on the

local node and other replicas are stored on off-rack nodes). So, writing the reduce output

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

6

How MapReduce Organizes Work?

Hadoop divides the job into tasks. There are two types of tasks:

1. Map tasks (Spilts & Mapping)

2. Reduce tasks (Shuffling, Reducing) as mentioned above.

The complete execution process (execution of Map and Reduce tasks, both) is controlled by two

types of entities called a

1. Jobtracker : Acts like a master (responsible for complete execution of submitted job)

2. Multiple Task Trackers : Acts like slaves, each of them performing the job

For every job submitted for execution in the system, there is one Jobtracker that resides

on Namenode and there are multiple tasktrackers which reside on Datanode.

 A job is divided into multiple tasks which are then run onto multiple data nodes in a cluster.

 It is the responsibility of jobtracker to coordinate the activity by scheduling tasks to run on

different data nodes.

 Execution of individual task is then look after by tasktracker, which resides on every data

node executing part of the job.

 Tasktracker's responsibility is to send the progress report to the jobtracker.

 In addition, tasktracker periodically sends 'heartbeat' signal to the Jobtracker so as to notify

him of current state of the system.

 Thus jobtracker keeps track of overall progress of each job. In the event of task failure, the

jobtracker can reschedule it on a different tasktracker.

3. DEVELOPING MAP-REDUCE PROGRAMS IN JAVA

Given below is the data regarding the electrical consumption of an organization. It contains the

monthly electrical consumption and the annual average for various years.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

7

If the above data is given as input, we have to write applications to process it and produce results

such as finding the year of maximum usage, year of minimum usage, and so on. This is a walkover

for the programmers with finite number of records. They will simply write the logic to produce the

required output, and pass the data to the application written.

But, think of the data representing the electrical consumption of all the largescale industries of a

particular state, since its formation.

When we write applications to process such bulk data,

 They will take a lot of time to execute.

 There will be a heavy network traffic when we move data from source to network server and

so on.

To solve these problems, we have the MapReduce framework.

Input Data

The above data is saved as sample.txt and given as input. The input file looks as shown

below.

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

Example Program

Given below is the program to the sample data using MapReduce framework.

package hadoop;

import java.util.*;

import java.io.IOException;
import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class ProcessUnits
{
 //Mapper class
 public static class E_EMapper extends MapReduceBase implements
 Mapper<LongWritable , /*Input key Type */
 Text, /*Input value Type*/
 Text, /*Output key Type*/
 IntWritable> /*Output value Type*/
 {

 //Map function
 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException
 {
 String line = value.toString();
 String lasttoken = null;
 StringTokenizer s = new StringTokenizer(line,"\t");
 String year = s.nextToken();

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

8

 while(s.hasMoreTokens())
 {
 lasttoken=s.nextToken();
 }

 int avgprice = Integer.parseInt(lasttoken);
 output.collect(new Text(year), new IntWritable(avgprice));
 }
 }

 //Reducer class
 public static class E_EReduce extends MapReduceBase implements
 Reducer< Text, IntWritable, Text, IntWritable >
 {

 //Reduce function
 public void reduce(Text key, Iterator <IntWritable> values,
 OutputCollector<Text, IntWritable> output, Reporter reporter) throws
IOException
 {
 int maxavg=30;
 int val=Integer.MIN_VALUE;

 while (values.hasNext())
 {
 if((val=values.next().get())>maxavg)
 {
 output.collect(key, new IntWritable(val));
 }
 }

 }
 }

 //Main function
 public static void main(String args[])throws Exception
 {
 JobConf conf = new JobConf(ProcessUnits.class);

 conf.setJobName("max_eletricityunits");
 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(E_EMapper.class);
 conf.setCombinerClass(E_EReduce.class);
 conf.setReducerClass(E_EReduce.class);
 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);
 }
}

Save the above program as ProcessUnits.java. The compilation and execution of the program is

explained below.

Compilation and Execution of Process Units Program

Let us assume we are in the home directory of a Hadoop user (e.g. /home/hadoop).

Follow the steps given below to compile and execute the above program.

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

9

Step 1

The following command is to create a directory to store the compiled java classes.

$ mkdir units

Step 2

Download Hadoop-core-2.6.5.jar, which is used to compile and execute the MapReduce program.

Visit the following link http://www-us.apache.org/dist/hadoop/common/hadoop-2.6.5/hadoop-

2.6.5.tar.gz to download the jar. Let us assume the downloaded folder is /home/hadoop/.

Step 3

The following commands are used for compiling the ProcessUnits.java program and creating a jar

for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java

$ jar -cvf units.jar -C units/ .

Step 4

The following command is used to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 5

The following command is used to copy the input file named sample.txtin the input directory of

HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir

Step 6

The following command is used to verify the files in the input directory.

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 7

The following command is used to run the Eleunit_max application by taking the input files from the

input directory.

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir

output_dir

Wait for a while until the file is executed. After execution, as shown below, the output will contain

the number of input splits, the number of Map tasks, the number of reducer tasks, etc.

INFO mapreduce.Job: Job job_1414748220717_0002

completed successfully

14/10/31 06:02:52

INFO mapreduce.Job: Counters: 49

File System Counters

FILE: Number of bytes read=61

FILE: Number of bytes written=279400

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=546

HDFS: Number of bytes written=40

HDFS: Number of read operations=9

bigdataj.blogspot.com
http://www-us.apache.org/dist/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz
http://www-us.apache.org/dist/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

10

HDFS: Number of large read operations=0

HDFS: Number of write operations=2 Job Counters

 Launched map tasks=2

 Launched reduce tasks=1

 Data-local map tasks=2

 Total time spent by all maps in occupied slots (ms)=146137

 Total time spent by all reduces in occupied slots (ms)=441

 Total time spent by all map tasks (ms)=14613

 Total time spent by all reduce tasks (ms)=44120

 Total vcore-seconds taken by all map tasks=146137

 Total vcore-seconds taken by all reduce tasks=44120

 Total megabyte-seconds taken by all map tasks=149644288

 Total megabyte-seconds taken by all reduce tasks=45178880

Map-Reduce Framework

Map input records=5

 Map output records=5

 Map output bytes=45

 Map output materialized bytes=67

 Input split bytes=208

 Combine input records=5

 Combine output records=5

 Reduce input groups=5

 Reduce shuffle bytes=6

 Reduce input records=5

 Reduce output records=5

 Spilled Records=10

 Shuffled Maps =2

 Failed Shuffles=0

 Merged Map outputs=2

 GC time elapsed (ms)=948

 CPU time spent (ms)=5160

 Physical memory (bytes) snapshot=47749120

 Virtual memory (bytes) snapshot=2899349504

 Total committed heap usage (bytes)=277684224

File Output Format Counters

 Bytes Written=40

Step 8

The following command is used to verify the resultant files in the output folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

Step 9

The following command is used to see the output in Part-00000 file. This file is generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Below is the output generated by the MapReduce program.

1981 34

1984 40

1985 45

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

11

Step 10

The following command is used to copy the output folder from HDFS to the local file system for

analyzing.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs get output_dir

/home/Hadoop

Important Commands

All Hadoop commands are invoked by the $HADOOP_HOME/bin/hadoop command. Running the

Hadoop script without any arguments prints the description for all commands.

Usage : hadoop [--config confdir] COMMAND

The following table lists the options available and their description.

Options Description

namenode -format Formats the DFS filesystem.

secondarynamenode Runs the DFS secondary namenode.

namenode Runs the DFS namenode.

datanode Runs a DFS datanode.

dfsadmin Runs a DFS admin client.

mradmin Runs a Map-Reduce admin client.

fsck Runs a DFS filesystem checking utility.

fs Runs a generic filesystem user client.

balancer Runs a cluster balancing utility.

oiv Applies the offline fsimage viewer to an fsimage.

fetchdt Fetches a delegation token from the NameNode.

jobtracker Runs the MapReduce job Tracker node.

pipes Runs a Pipes job.

tasktracker Runs a MapReduce task Tracker node.

historyserver Runs job history servers as a standalone daemon.

job Manipulates the MapReduce jobs.

queue Gets information regarding JobQueues.

version Prints the version.

jar <jar> Runs a jar file.

distcp <srcurl> <desturl> Copies file or directories recursively.

distcp2 <srcurl> <desturl> DistCp version 2.

archive -archiveName NAME -p Creates a hadoop archive.

<parent path> <src>* <dest>
classpath Prints the class path needed to get the Hadoop jar and the

required libraries.

daemonlog Get/Set the log level for each daemon

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

12

4. SETTING UP THE CLUSTER WITH HDFS AND UNDERSTANDING HOW
MAP- REDUCE WORKS ON HDFS

a. Setting up SSH for a Hadoop cluster

The first step is to check whether SSH is installed on your nodes. We can easily do this by

use of the "which" UNIX command:

[hadoop-user@master]$ which ssh
/usr/bin/ssh

[hadoop-user@master]$ which sshd
/usr/bin/sshd

[hadoop-user@master]$ which ssh-keygen
/usr/bin/ssh-keygen

If you instead receive an error message such as this,

/usr/bin/which: no ssh in (/usr/bin:/bin:/usr/sbin...

install OpenSSH (www.openssh.com) via a Linux package manager or by downloading the

source directly. (Better yet, have your system administrator do it for you.)

Generate SSH key pair

Having verified that SSH is correctly installed on all nodes of the cluster, we use ssh-keygen

on the master node to generate an RSA key pair. Be certain to avoid entering a passphrase,

or you’ll have to manually enter that phrase every time the master node attempts to access

another node.

[hadoop-user@master]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop-user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Your identification has been saved in /home/hadoop-user/.ssh/id_rsa.
Your public key has been saved in /home/hadoop-user/.ssh/id_rsa.pub.

After creating your key pair, your public key will be of the form

[hadoop-user@master]$ more /home/hadoop-user/.ssh/id_rsa.pub ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAQEA1WS3RG8LrZH4zL2/1oYgkV1OmVclQ2OO5

vRi0Nd51Sy3wWpBVHx82F3x3ddoZQjBK3uvLMaDhXvncJG31JPfU7CTAfmtgINYv0k

dUbDJq4TKG/fuO5q9CqHV71thN2M310gcJ0Y9YCN6grmsiWb2iMcXpy2pqg8UM3ZK

ApyIPx99O1vREWm+4moFTgYwIl5be23ZCyxNjgZFWk5MRlT1p1TxB68jqNbPQtU7fIa

fS7Sasy7h4eyIy7cbLh8x0/V4/mcQsY5dvReitNvFVte6onl8YdmnMpAh6nwCvog3UeWW

JjVZTEBFkTZuV1i9HeYHxpm1wAzcnf7az78jT IRQ== hadoop-user@master

and we next need to distribute this public key across your cluster.

Distribute public key and validate logins

Albeit a bit tedious, you’ll next need to copy the public key to every slave node as well as

the master node:

[hadoop-user@master]$ scp ~/.ssh/id_rsa.pub hadoop-user@target:~/master_key

Manually log in to the target node and set the master key as an authorized key (or append to

the list of authorized keys if you have others defined).

[hadoop-user@target]$ mkdir ~/.ssh
[hadoop-user@target]$ chmod 700 ~/.ssh
[hadoop-user@target]$ mv ~/master_key ~/.ssh/authorized_keys

bigdataj.blogspot.com
www.openssh.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

13

[hadoop-user@target]$ chmod 600 ~/.ssh/authorized_keys

After generating the key, you can verify it’s correctly defined by attempting to log in to the

target node from the master:

[hadoop-user@master]$ ssh target
The authenticity of host 'target (xxx.xxx.xxx.xxx)' can’t be established.
RSA key fingerprint is 72:31:d8:1b:11:36:43:52:56:11:77:a4:ec:82:03:1d.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'target' (RSA) to the list of known hosts.
Last login: Sun Jan 4 15:32:22 2009 from master

After confirming the authenticity of a target node to the master node, you won’t be

prompted upon subsequent login attempts.

[hadoop-user@master]$ ssh target
Last login: Sun Jan 4 15:32:49 2009 from master

We’ve now set the groundwork for running Hadoop on your own cluster. Let’s discuss the

different Hadoop modes you might want to use for your projects.

Running Hadoop

We need to configure a few things before running Hadoop. Let’s take a closer look at the

Hadoop configuration directory:

[hadoop-user@master]$ cd $HADOOP_HOME
[hadoop-user@master]$ ls -l conf/
total 100
-rw-rw-r-- 1 hadoop-user hadoop 2065 Dec 1 10:07 capacity-scheduler.xml

-rw-rw-r-- 1 hadoop-user hadoop 535 Dec 1 10:07 configuration.xsl

-rw-rw-r-- 1 hadoop-user hadoop 49456 Dec 1 10:07 hadoop-default.xml

-rwxrwxr-x 1 hadoop-user hadoop 2314 Jan 8 17:01 hadoop-env.sh

-rw-rw-r-- 1 hadoop-user hadoop 2234 Jan 2 15:29 hadoop-site.xml

-rw-rw-r-- 1 hadoop-user hadoop 2815 Dec 1 10:07 log4j.properties

-rw-rw-r-- 1 hadoop-user hadoop 28 Jan 2 15:29 masters

-rw-rw-r-- 1 hadoop-user hadoop 84 Jan 2 15:29 slaves

-rw-rw-r-- 1 hadoop-user hadoop 401 Dec 1 10:07 sslinfo.xml.example

The first thing you need to do is to specify the location of Java on all the nodes including the master.

In hadoop-env.sh.

>$export JAVA_HOME=/usr/share/jdk

b. Operational Modes Of Hadoop

We have 3 operational modes for running Hadoop are,

1. Local (standalone) mode

2. Pseudo-distributed mode

3. Fully distributed mode

1. Local (standalone) mode

The standalone mode is the default mode for Hadoop. When you first uncompress

the Hadoop source package, it’s ignorant of your hardware setup. Hadoop chooses

to be conservative and assumes a minimal configuration. All three XML files (or

hadoop-site.xml before version 0.20) are empty under this default mode:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

</configuration>

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

14

With empty configuration files, Hadoop will run completely on the local machine.

Because there’s no need to communicate with other nodes, the standalone mode

doesn’t use HDFS, nor will it launch any of the Hadoop daemons. Its primary use is

for developing and debugging the application logic of a MapReduce pro-gram

without the additional complexity of interacting with the daemons.

2. Pseudo-distributed mode

The pseudo-distributed mode is running Hadoop in a “cluster of one” with all

daemons running on a single machine. This mode complements the standalone

mode for debugging your code, allowing you to examine memory usage, HDFS

input/out-put issues, and other daemon interactions. Listing 2.1 provides simple

XML files to configure a single server in this mode.

Listing 2.1 Example of the three configuration files for pseudo-distributed

mode

core-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
<description>The name of the default file system. A

URI whose scheme and authority determine the

FileSystem implementation. </description>
</property>

</configuration>

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

<name>mapred.job.tracker</name>
<value>localhost:9001</value>
<description>The host and port that the MapReduce job

tracker runs at.</description>
</property>

</configuration>

hdfs-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>The actual number of replications can be specified

when the file is created.</description>
</property>

</configuration>

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

15

In core-site.xml and mapred-site.xml we specify the hostname and port of the

NameNode and the JobTracker, respectively. In hdfs-site.xml we specify the default

replication factor for HDFS, which should only be one because we’re running on

only one node. We must also specify the location of the Secondary NameNode in

the mas-ters file and the slave nodes in the slaves file:

[hadoop-user@master]$ cat masters
localhost
[hadoop-user@master]$ cat slaves
localhost

While all the daemons are running on the same machine, they still communicate

with each other using the same SSH protocol as if they were distributed over a

cluster. For single-node operation simply check to see if your machine already

allows you to ssh back to itself.

[hadoop-user@master]$ ssh localhost

If it does, then you’re good. Otherwise setting up takes two lines.

[hadoop-user@master]$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
[hadoop-user@master]$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

You are almost ready to start Hadoop. But first you’ll need to format your HDFS by

using the command

[hadoop-user@master]$ bin/hadoop namenode -format

We can now launch the daemons by use of the start-all.sh script. The Java jps

command will list all daemons to verify the setup was successful.

[hadoop-user@master]$ bin/start-all.sh

[hadoop-user@master]$ jps

26893 Jps

26832 TaskTracker

26620 SecondaryNameNode

26333 NameNode

26484 DataNode

26703 JobTracker

3. Fully distributed mode

After continually emphasizing the benefits of distributed storage and distributed

computation, it’s time for us to set up a full cluster. In the discussion below we’ll

use the following server names:

■ master—The master node of the cluster and host of the NameNode and Job-

Tracker daemons

■ backup—The server that hosts the Secondary NameNode daemon
■ hadoop1, hadoop2, hadoop3, ...—The slave boxes of the cluster running both

DataNode and TaskTracker daemons

Listing 2.2 Example configuration files for fully distributed

bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

16

The key differences are

■ We explicitly stated the hostname for location of the NameNode ‘1’ and JobTracker ‘2’

daemons.
■ We increased the HDFS replication factor to take advantage of distributed

storage ‘3’. Recall that data is replicated across HDFS to increase availability and
reliability.

We also need to update the masters and slaves files to reflect the locations of the other daemons.

[hadoop-user@master]$ cat masters
backup
[hadoop-user@master]$ cat slaves
hadoop1
hadoop2
hadoop3
...

Once you have copied these files across all the nodes in your cluster, be sure to format
HDFS to prepare it for storage:

[hadoop-user@master]$ bin/hadoop namenode-format

Now you can start the Hadoop daemons:

[hadoop-user@master]$ bin/start-all.sh

and verify the nodes are running their assigned jobs.

[hadoop-user@master]$ jps
30879 JobTracker
30717 NameNode

30965 Jps
[hadoop-user@backup]$ jps
2099 Jps
1679 SecondaryNameNode
[hadoop-user@hadoop1]$ jps
7101 TaskTracker
7617 Jps
6988 DataNode

You have a functioning cluster!

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

17

5. RUNNING SIMPLE WORD COUNT MAP-REDUCE PROGRAM ON THE CLUSTER

WordCount is a simple application that counts the number of occurrences of each word in a given input set.

This works with a local-standalone, pseudo-distributed or fully-distributed Hadoop installation

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount

{

 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>

 {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException

 {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

 {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>

{

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,Context context) throws

IOException, InterruptedException

 {

 int sum = 0;

 for (IntWritable val : values)

 {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

 public static void main(String[] args) throws Exception

{

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setCombinerClass(IntSumReducer.class);

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

18

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Usage

Assuming environment variables are set as follows:

export JAVA_HOME=/usr/java/default

export PATH=${JAVA_HOME}/bin:${PATH}

export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

Compile WordCount.java and create a jar:

$ bin/hadoop com.sun.tools.javac.Main WordCount.java

$ jar cf wc.jar WordCount*.class

Assuming that:

 /user/joe/wordcount/input - input directory in HDFS

 /user/joe/wordcount/output - output directory in HDFS

Sample text-files as input:

$ bin/hadoop fs -ls /user/joe/wordcount/input/ /user/joe/wordcount/input/file01

/user/joe/wordcount/input/file02

$ bin/hadoop fs -cat /user/joe/wordcount/input/file01

Hello World Bye World

$ bin/hadoop fs -cat /user/joe/wordcount/input/file02

Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar wc.jar WordCount /user/joe/wordcount/input /user/joe/wordcount/output

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000`

Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2`

Walk-through

The WordCount application is quite straight-forward.

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

19

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

}

The Mapper implementation, via the map method, processes one line at a time, as provided by the specified

TextInputFormat. It then splits the line into tokens separated by whitespaces, via the StringTokenizer, and emits a

key-value pair of < <word>, 1>.

For the given sample input the first map emits:

< Hello, 1>

< World, 1>

< Bye, 1>

< World, 1>

The second map emits:

< Hello, 1>

< Hadoop, 1>

< Goodbye, 1>

< Hadoop, 1>

We’ll learn more about the number of maps spawned for a given job, and how to control them in a fine-grained

manner, a bit later in the tutorial.

 job.setCombinerClass(IntSumReducer.class);

WordCount also specifies a combiner. Hence, the output of each map is passed through the local combiner (which is

same as the Reducer as per the job configuration) for local aggregation, after being sorted on the *key*s.

The output of the first map:

< Bye, 1>

< Hello, 1>

< World, 2>`

The output of the second map:

< Goodbye, 1>

< Hadoop, 2>

< Hello, 1>`

public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException,

InterruptedException

{

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

}

The Reducer implementation, via the reduce method just sums up the values, which are the occurrence counts for

each key (i.e. words in this example).

Thus the output of the job is:

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

20

< Bye, 1>

< Goodbye, 1>

< Hadoop, 2>

< Hello, 2>

< World, 2>`

The main method specifies various facets of the job, such as the input/output paths (passed via the command line),

key/value types, input/output formats etc., in the Job. It then calls the job.waitForCompletion to submit the job and

monitor its progress.

6. ADDITIONAL EXAMPLES OF M-R PROGRAMMING.

Problem statement: I run a highly busy website and need to pull down my site for an hour in order to apply some

patches and maintenance of backend severs, which means the website will be completely unavailable for an hour.

To perform this activity the primary lookout will be that shutdown outage should be affected to least number of

users. The games starts here: We need to identify at what hour of the day the web traffic is least for the website so

that maintenance activity can be scheduled for that time.

There is an Apache web server log for each day which records the activities happening on website. But those are

huge files up to 5 GB each.

Excerpt from Log file:

64.242.88.10 – – [07/Mar/2014:22:12:28 -0800] “GET /twiki/bin/attach/TWiki/WebSearch HTTP/1.1” 401 12846

64.242.88.10 – – [07/Mar/2014:22:15:57 -0800] “GET /mailman/listinfo/hs_rcafaculty HTTP/1.1” 200 6345

We are interested only in the date field i.e. [07/Mar/2014:22:12:28 -0800]

Solution: I need to consume log files of one month and run my MapReduce code which calculates the total number

of hits for each hour of the day. Hour which has the least number of hits is perfect for the downtime. It is as simple

as that!

A MapReduce program usually consists of the following 3 parts:

1. Mapper

2. Reducer

3. Driver

As the name itself states Map and Reduce, the code is divided basically into two phases one is Map and second is

Reduce. Both phase has an input and output as key-value pairs. Programmer has been given the liberty to choose the

data model for the input and output for Map and Reduce both. Depending upon the business problem we need to use

the appropriate data model.

What Mappers does?

 The Map function reads the input files as key/value pairs, processes each, and generates zero or

more output key/value pairs.

 The Map class extends Mapper class which is a subclass of org.apache.hadoop.mapreduce.

 java.lang.Object : org.apache.hadoop.mapreduce.Mapper

 The input and output types of the map can be (and often are) different from each other.

 If the application is doing a word count, the map function would break the line into words and

output a key/value pair for each word. Each output pair would contain the word as the key and

the number of instances of that word in the line as the value.

 The Map function is also a good place to filter any unwanted fields/ data from input file, we

take the data only we are interested to remove unnecessary workload.

I have used Hadoop 1.2.1 API, Java 1.7 to write this program.

1

2

3

4

5

6

7

8

9

10

package com.balajitk.loganalyzer;

import java.io.IOException;

import java.text.ParseException;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

21

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.balajitk.loganalyzer.ParseLog;

public class LogMapper extends

 Mapper<LongWritable, Text, IntWritable, IntWritable> {

 private static Logger logger = LoggerFactory.getLogger(LogMapper.class);

 private IntWritable hour = new IntWritable();

 private final static IntWritable one = new IntWritable(1);

 private static Pattern logPattern = Pattern

 .compile("([^]*) ([^]*) ([^]*) \\[([^]]*)\\]"

 + " \"([^\"]*)\""

 + " ([^]*) ([^]*).*");

 public void map(LongWritable key, Text value, Context context)

 throws InterruptedException, IOException {

 logger.info("Mapper started");

 String line = ((Text) value).toString();

 Matcher matcher = logPattern.matcher(line);

 if (matcher.matches()) {

 String timestamp = matcher.group(4);

 try {

 hour.set(ParseLog.getHour(timestamp));

 } catch (ParseException e) {

 logger.warn("Exception", e);

 }

 context.write(hour, one);

 }

 logger.info("Mapper Completed");

 }

}

The Mapper code which is written above is written for processing single record from programmer’s point

of view. We will never write logic in MapReduce to deal with entire data set. The framework is

responsible to convert the code to process entire data set by converting into desired key value pair.

The Mapper class has four parameters that specifies the input key, input value, output key, and output

values of the Map function.

1 Mapper<LongWritable, Text, IntWritable, IntWritable>

1 Mapper<Input key, Input value, Output key, and Output values>

1 Mapper<Offset of the input file, Single Line of the file, Hour of the day, Integer One>

Hadoop provides its own set of basic types that are optimized for network serialization which can be found

in the org.apache.hadoop.io package.

In my program I have used LongWritable, which corresponds to a Java Long, Text (like Java String), and

IntWritable (like Java Integer). Mapper write their output using instance of Context class which is used to

communicate in Hadoop.

What Reducer does?

1. The Reducer code reads the outputs generated by the different mappers as pairs and

emits key value pairs.

2. Reducer reduces a set of intermediate values which share a key to a smaller set of values.

3. java.lang.Object : org.apache.hadoop.mapreduce.Reducer

4. Reducer has 3 primary phases: shuffle, sort and reduce.

5. Each reduce function processes the intermediate values for a particular key generated by the map

function. There exists a one-one mapping between keys and reducers.

6. Multiple reducers run in parallel, as they are independent of one another. The number of reducers

for a job is decided by the programmer. By default, the number of reducers is 1.

7. The output of the reduce task is typically written to the FileSystem via

OutputCollector.collect(WritableComparable, Writable)

1

2

3

package com.balajitk.loganalyzer;

import java.io.IOException;

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

22

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.mapreduce.Reducer;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class LogReducer extends

 Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {

 private static Logger logger = LoggerFactory.getLogger(LogReducer.class);

 public void reduce(IntWritable key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException {

 logger.info("Reducer started");

 int sum = 0;

 for (IntWritable value : values) {

 sum = sum + value.get();

 }

 context.write(key, new IntWritable(sum));

 logger.info("Reducer completed");

 }

}

Four parameters are used in Reducers to specify input and output, which define the types of the input and

output key/value pairs. Output of the map task will be input to reduce task. First two parameter are the

input key value pair from map task. In our example IntWritable, IntWritable

1 Reducer<IntWritable, IntWritable, IntWritable, IntWritable>

1 Reducer<Input key, Input value, Output key, and Output values>

1 Reducer<Hour of the day, List of counts, Hour, Total Count for the Hour>;

What Driver does?

Driver class is responsible to execute the MapReduce framework. Job object allows you to configure the

Mapper, Reducer, InputFormat, OutputFormat etc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

package com.balajitk.loganalyzer;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class LogDriver {

 private static Logger logger = LoggerFactory.getLogger(LogDriver.class);

 public static void main(String[] args) throws Exception {

 logger.info("Code started");

 Job job = new Job();

 job.setJarByClass(LogDriver.class);

 job.setJobName("Log Analyzer");

 job.setMapperClass(LogMapper.class);

 job.setReducerClass(LogReducer.class);

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

bigdataj.blogspot.com
bigdataj.blogspot.com

UNIT-3 INTRODUCTION TO BIG DATA: Map-Reduce Programming

23

31

32

33

34

35

 job.waitForCompletion(true);

 logger.info("Code ended");

 }

}

Job control is performed through the Job class in the new API, rather than the old

JobClient, which no longer exists in the new API.

Output:

bigdataj.blogspot.com
bigdataj.blogspot.com
https://sreejithrpillai.files.wordpress.com/2014/10/mapreduceoutput.png

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 1

Unit-4: Anatomy of Map-Reduce Jobs:

1. Understanding how Map- Reduce program works

2. Tuning Map-Reduce jobs

3. Understanding different logs produced by Map-Reduce jobs and

4. Debugging the Map- Reduce jobs.

 In releases of Hadoop up to and including the 0.20 release series, mapred.job.tracker determines the

means of execution.

 In Hadoop 0.23.0 a new MapReduce implementation was introduced. The new implementation (called

MapReduce 2) is built on a system called YARN, described in “YARN (MapReduce 2)”.

 For now, the framework that is used for execution is set by the mapreduce.framework.name property,

which takes the values local (for the local job runner), classic (for the “classic” MapReduce framework,

also called MapReduce 1, which uses a jobtracker and tasktrackers), and yarn (for the new framework).

1. Classic MapReduce (MapReduce 1)

A job run in classic MapReduce is illustrated in Figure 5-1. At the highest level, there are four independent

entities:

 The client, which submits the MapReduce job.

 The jobtracker, which coordinates the job run. The jobtracker is a Java application whose main class is

JobTracker.

 The tasktrackers, which run the tasks that the job has been split into. Tasktrackers are Java applications

whose main class is TaskTracker.

 The distributed filesystem (normally HDFS), which is used for sharing job files between the other

entities.

Figure 5-1. How Hadoop runs a MapReduce job using the classic framework

1. Understanding how Map-Reduce program works

G B Gangadhar

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 2

Job Submission

The submit() method on Job creates an internal JobSummitter instance and calls submitJobInternal() on it

(step1 in Figure 5-1). Having submitted the job, waitForCompletion() polls the job’s progress once a

second and reports the progress to the console if it has changed since the last report. When the job is

complete, if it was successful, the job counters are displayed. Otherwise, the error that caused the job to

fail is logged to the console.

The job submission process implemented by JobSummitter does the following:

 Asks the jobtracker for a new job ID (by calling getNewJobId() on JobTracker) (step 2).

 Checks the output specification of the job. For example, if the output directory has not been specified

or it already exists, the job is not submitted and an error is thrown to the MapReduce program.

 Computes the input splits for the job. If the splits cannot be computed, because the input paths don’t

exist, for example, then the job is not submitted and an error is thrown to the MapReduce program.

 Copies the resources needed to run the job, including the job JAR file, the configuration file, and the

computed input splits, to the jobtracker’s filesystem in a directory named after the job ID. The job JAR

is copied with a high replication factor (controlled by the mapred.submit.replication property, which

defaults to 10) so that there are lots of copies across the cluster for the tasktrackers to access when they

run tasks for the job (step 3).

 Tells the jobtracker that the job is ready for execution (by calling submitJob() on JobTracker)

(step4).

Job Initialization

- When the JobTracker receives a call to its submitJob() method, it puts it into an internal queue from

where the job scheduler will pick it up and initialize it. Initialization involves creating an object to

represent the job being run, which encapsulates its tasks, and bookkeeping information to keep track of

the tasks’ status and progress (step 5).

- To create the list of tasks to run, the job scheduler first retrieves the input splits computed by the client

from the shared filesystem (step 6).

- It then creates one map task for each split. The number of reduce tasks to create is determined by the

mapred.reduce.tasks property in the Job, which is set by the setNumReduceTasks() method, and the

scheduler simply creates this number of reduce tasks to be run. Tasks are given IDs at this point.

- In addition to the map and reduce tasks, two further tasks are created: a job setup task and a job

cleanup task. These are run by tasktrackers and are used to run code to setup the job before any map

tasks run, and to cleanup after all the reduce tasks are complete.

- The OutputCommitter that is configured for the job determines the code to be run, and by default this is

a FileOutputCommitter. For the job setup task it will create the final output directory for the job and the

temporary working space for the task output, and for the job cleanup task it will delete the temporary

working space for the task output.

Task Assignment

- Tasktrackers run a simple loop that periodically sends heartbeat method calls to the jobtracker.

Heartbeats tell the jobtracker that a tasktracker is alive, but they also double as a channel for messages.

- As a part of the heartbeat, a tasktracker will indicate whether it is ready to run a new task, and if it is,

the jobtracker will allocate it a task, which it communicates to the tasktracker using the heartbeat return

value (step 7).

- Before it can choose a task for the tasktracker, the jobtracker must choose a job to select the task from.

Job Scheduler simply maintains a priority list of jobs. Having chosen a job, the jobtracker now chooses

a task for the job.

- Tasktrackers have a fixed number of slots for map tasks and for reduce tasks: for example, a

tasktracker may be able to run two map tasks and two reduce tasks simultaneously.

- (The precise number depends on the number of cores and the amount of memory on the tasktracker;

The default scheduler fills empty map task slots before reduce task slots, so if the tasktracker has at

least one empty map task slot, the jobtracker will select a map task; otherwise, it will select a reduce

task.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 3

- To choose a reduce task, the jobtracker simply takes the next in its list of yet-to-be-run reduce tasks,

since there are no data locality considerations.

- For a map task, however, it takes account of the tasktracker’s network location and picks a task whose

input split is as close as possible to the tasktracker.

- In the optimal case, the task is data-local, that is, running on the same node that the split resides on.

Alternatively, the task may be rack-local: on the same rack, but not the same node, as the split. Some

tasks are neither data-local nor rack-local and retrieve their data from a different rack from the one they

are running on. You can tell the proportion of each type of task by looking at a job’s counters

Task Execution

- Now that the tasktracker has been assigned a task, the next step is for it to run the task.

- First, it localizes the job JAR by copying it from the shared filesystem to the tasktracker’s filesystem. It

also copies any files needed from the distributed cache by the application to the local disk; (step 8).

- Second, it creates a local working directory for the task, and un-jars the contents of the JAR into this

directory.

- Third, it creates an instance of TaskRunner to run the task.

- TaskRunner launches a new Java Virtual Machine (step 9) to run each task in (step 10), so that any

bugs in the user-defined map and reduce functions don’t affect the tasktracker (by causing it to crash or

hang, for example).

- The child process communicates with its parent through the umbilical interface. This way it informs the

parent of the task’s progress every few seconds until the task is complete.

- Each task can perform setup and cleanup actions, which are run in the same JVM as the task itself, and

are determined by the OutputCommitter for the job.

- The cleanup action is used to commit the task, which in the case of file-based jobs means that its output

is written to the final location for that task.

- The commit protocol ensures that when speculative execution is enabled, only one of the duplicate

tasks is committed and the other is aborted.

Streaming and Pipes

Figure 5-2. The relationship of the Streaming and Pipes executable to the tasktracker and its child

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 4

- Both Streaming and Pipes run special map and reduce tasks for the purpose of launching the user-

supplied executable and communicating with it (Figure 5-2).

- In the case of Streaming, the Streaming task communicates with the process (which may be written in

any language) using standard input and output streams.

- The Pipes task, on the other hand, listens on a socket and passes the C++ process a port number in its

environment, so that on startup, the C++ process can establish a persistent socket connection back to

the parent Java Pipes task.

Progress and Status Updates

- MapReduce jobs are long-running batch jobs, taking anything from minutes to hours to run.

- A job and each of its tasks have a status, which includes such things as the state of the job or task (e.g.,

running, successfully completed, failed), the progress of maps and reduces, the values of the job’s

counters, and a status message or description (which may be set by user code).

- These statuses change over the course of the job, so how do they get communicated back to the client?

- When a task is running, it keeps track of its progress, that is, the proportion of the task completed.

- If a task reports progress, it sets a flag to indicate that the status change should be sent to the

tasktracker.

- The flag is checked in a separate thread every three seconds, and if set it notifies the tasktracker of the

current task status. Meanwhile, the tasktracker is sending heartbeats to the jobtracker longer), and the

status of all the tasks being run by the tasktracker is sent in the call.

- The jobtracker combines these updates to produce a global view of the status of all the jobs being run

and their constituent tasks.

- Finally, as mentioned earlier, the Job receives the latest status by polling the jobtracker every second.

Clients can also use Job’s getStatus() method to obtain a JobStatus instance, which contains all of the

status information for the job.

- The method calls are illustrated in Figure 5-3

Figure 5-3. How status updates are propagated through the MapReduce 1 system

Job Completion

- When the jobtracker receives a notification that the last task for a job is complete, it changes the status

for the job to “successful.”

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 5

- Then, when the Job polls for status, it learns that the job has completed successfully, so it prints a

message to tell the user and then returns from the waitForCompletion() method.

- The jobtracker also sends an HTTP job notification if it is configured to do so. This can be configured

by clients wishing to receive callbacks, via the job.end.notification.url property.

- Last, the jobtracker cleans up its working state for the job and instructs tasktrackers to do the same

2. YARN (MapReduce 2)

For very large clusters in the region of 4000 nodes and higher, the MapReduce system described in the

previous section begins to hit scalability bottlenecks, so in 2010 a group at Yahoo! began to design the next

generation of MapReduce. The result was YARN, short for Yet Another Resource Negotiator (or if you prefer

recursive ancronyms, YARN Application Resource Negotiator).

Figure 5-4. How Hadoop runs a MapReduce job using YARN

You can run a MapReduce job with a single method call: submit() on a Job object (you can also call

waitForCompletion(), which submits the job if it hasn’t been submitted already, then waits for it to finish).

This method call conceals a great deal of processing behind the scenes.

The whole process is illustrated in Figure 5-4.

At the highest level, there are five independent entities

1. The client, which submits the MapReduce job.

2. The YARN resource manager, which coordinates the allocation of compute resources on the cluster.

3. The YARN node managers, which launch and monitor the compute containers on machines in the

cluster.

4. The MapReduce application master, which coordinates the tasks running the MapReduce job. The

application master and the MapReduce tasks run in containers that are scheduled by the resource

manager and managed by the node managers.

5. The distributed filesystem (normally HDFS), which is used for sharing job files between the other

entities.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 6

Job Submission

The submit() method on Job creates an internal JobSubmitter instance and calls submitJobInternal() on

it (step 1 in Figure 5-4). Having submitted the job, waitForCompletion() polls the job’s progress once

per second and reports the progress to the console if it has changed since the last report.

When the job completes successfully, the job counters are displayed. Otherwise, the error that caused

the job to fail is logged to the console.

The job submission process implemented by JobSubmitter does the following:

- Asks the resource manager for a new application ID, used for the MapReduce job ID (step 2).

- Checks the output specification of the job. For example, if the output directory has not been

specified or it already exists, the job is not submitted and an error is thrown to the MapReduce

program.

- Computes the input splits for the job. If the splits cannot be computed (because the input paths

don’t exist, for example), the job is not submitted and an error is thrown to the MapReduce

program.

- Copies the resources needed to run the job, including the job JAR file, the configuration file,

and the computed input splits, to the shared filesystem in a directory named after the job ID

(step 3).

- The job JAR is copied with a high replication factor (controlled by the

mapreduce.client.submit.file.replication property, which defaults to 10) so that there are lots of

copies across the cluster for the node managers to access when they run tasks for the job.

- Submits the job by calling submitApplication() on the resource manager (step 4).

Job Initialization

- When the resource manager receives a call to its submitApplication() method, it hands off the request

to the YARN scheduler. The scheduler allocates a container, and the resource manager then launches

the application master’s process there, under the node manager’s management (steps 5a and 5b).

- The application master for MapReduce jobs is a Java application whose main class is MRAppMaster. It

initializes the job by creating a number of bookkeeping objects to keep track of the job’s progress, as it

will receive progress and completion reports from the tasks (step 6).

- Next, it retrieves the input splits computed in the client from the shared filesystem (step 7). It then

creates a map task object for each split, as well as a number of reduce task objects determined by the

mapreduce.job.reduces property (set by the setNumReduceTasks() method on Job). Tasks are given

IDs at this point.

- The application master decides if the job is small, the application master may choose to run the tasks in

the same JVM as itself. This happens when it judges that the overhead of allocating and running tasks

in new containers outweighs the gain to be had in running them in parallel, compared to running them

sequentially on one node. Such a job is said to be uberized, or run as an uber task.

- What qualifies as a small job? By default, a small job is one that has less than 10 mappers, only one

reducer, and an input size that is less than the size of one HDFS block.

- Finally, before any tasks can be run, the application master calls the setupJob() method on the

OutputCommitter. For FileOutputCommitter, which is the default, it will create the final output

directory for the job and the temporary working space for the task output.

Task Assignment

- If the job does not qualify for running as an uber task, then the application master requests containers

for all the map and reduce tasks in the job from the resource manager (step 8).

- Requests for map tasks are made first and with a higher priority than those for reduce tasks, since all

the map tasks must complete before the sort phase of the reduce can start.

- Requests for reduce tasks are not made until 5% of map tasks have completed.

- Reduce tasks can run anywhere in the cluster, but requests for map tasks have data locality constraints

that the scheduler tries to honor. In the optimal case, the task is data local—that is, running on the

same node that the split resides on. Alternatively, the task may be rack local: on the same rack, but not

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 7

the same node, as the split. Some tasks are neither data local nor rack local and retrieve their data from

a different rack than the one they are running on. For a particular job run, you can determine the

number of tasks that ran at each locality level by looking at the job’s counters.

- Requests also specify memory requirements and CPUs for tasks. By default, each map and reduce task

is allocated 1,024 MB of memory and one virtual core. The values are configurable on a per-job basis

via the following properties: mapreduce.map.memory.mb, mapreduce.reduce.memory.mb,

mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores.

Task Execution

- Once a task has been assigned resources for a container on a particular node by the resource manager’s

scheduler, the application master starts the container by contacting the node manager (steps 9a and 9b).

- The task is executed by a Java application whose main class is YarnChild. Before it can run the task, it

localizes the resources that the task needs, including the job configuration and JAR file, and any files

from the distributed cache (step 10).

- Finally, it runs the map or reduce task (step 11).

- The YarnChild runs in a dedicated JVM, so that any bugs in the user-defined map and reduce functions

(or even in YarnChild) don’t affect the node manager—by causing it to crash or hang, for example.

- Each task can perform setup and commit actions, which are run in the same JVM as the task itself and

are determined by the OutputCommitter for the job.

- For file-based jobs, the commit action moves the task output from a temporary location to its final

location. The commit protocol ensures that when speculative execution is enabled, only one of the

duplicate tasks is committed and the other is aborted.

Streaming

Streaming runs special map and reduce

tasks for the purpose of launching the

usersupplied executable and

communicating with it (Figure 5-5).

The Streaming task communicates with

the process (which may be written in any

language) using standard input and output

streams. During execution of the task, the

Java process passes input key-value pairs

to the external process, which runs it

through the user-defined map or reduce

function and passes the output key-value

pairs back to the Java process. From the

node manager’s point of view, it is as if

the child process ran the map or reduce

code itself.

Figure 5-5. The relationship of the Streaming

executable to the node manager and the task

container

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 8

Progress and Status Updates

A job and each of its tasks have a status, which includes such things as the state of the job or

task (e.g., running, successfully completed, failed), the progress of maps and reduces, the values of the

job’s counters, and a status message or description (which may be set by user code).

These statuses change over the course of the job, so how do they get communicated back to

the client? When a task is running, it keeps track of its progress (i.e., the proportion of the task

completed). For map tasks, this is the proportion of the input that has been processed. For reduce tasks

the proportion of the reduce input processed.

Figure 5-6. How status updates are propagated through the MapReduce system

Tasks also have a set of counters that count various events as the task runs, which are either

built into the framework, such as the number of map output records written, or defined by users. As the

map or reduce task runs, the child process communicates with its parent application master through the

umbilical interface. The task reports its progress and status (including counters) back to its application

master, which has an aggregate view of the job, every three seconds over the umbilical interface.

The resource manager web UI displays all the running applications with links to the web UIs

of their respective application masters, each of which displays further details on the MapReduce job,

including its progress.

During the course of the job, the client receives the latest status by polling the application

master every second (the interval is set via mapreduce.client.progressmonitor.pol linterval). Clients can

also use Job’s getStatus() method to obtain a JobStatus instance, which contains all of the status

information for the job.

The process is illustrated in Figure 5-6.

Job Completion

When the application master receives a notification that the last task for a job is complete, it

changes the status for the job to “successful.” Then, when the Job polls for status, it learns that the job

has completed successfully, so it prints a message to tell the user and then returns from the

waitForCompletion() method. Job statistics and counters are printed to the console at this point.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 9

2. Tuning Map-Reduce jobs

The application master also sends an HTTP job notification if it is configured to do so. This

can be configured by clients wishing to receive callbacks, via the mapreduce.job.end-notification.url

property.

Finally, on job completion, the application master and the task containers clean up their

working state (so intermediate output is deleted), and the OutputCommitter’s commitJob() method is

called. Job information is archived by the job history server to enable later interrogation by users if

desired.

After a job is working, the question many developers ask is, “Can I make it run faster?” There are a few

Hadoop-specific “usual suspects” that are worth checking to see whether they are responsible for a performance

problem. You should run through the checklist in Table-1 before you start trying to profile or optimize at the

task level.

Table-1 Tuning checklist

Profiling Tasks

Hadoop allows you to profile a fraction of the tasks in a job and, as each task completes, pulls

down the profile information to your machine for later analysis with standard profiling tools.

Of course, it’s possible, and somewhat easier, to profile a job running in the local job runner.

And provided you can run with enough input data to exercise the map and reduce tasks, this can be a

valuable way of improving the performance of your mappers and reducers. There are a couple of

caveats, however. The local job runner is a very different environment from a cluster, and the data flow

patterns are very different. Optimizing the CPU performance of your code may be pointless if your

MapReduce job is I/O-bound (as many jobs are). To be sure that any tuning is effective, you should

compare the new execution time with the old one running on a real cluster. Even this is easier said than

done, since job execution times can vary due to resource contention with other jobs and the decisions

the scheduler makes regarding task placement. To get a good idea of job execution time under these

circumstances, perform a series of runs (with and without the change) and check whether any

improvement is statistically significant.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 10

The HPROF profiler

There are a number of configuration properties to control profiling, which are also exposed via convenience

methods on JobConf. Enabling profiling is as simple as setting the property mapreduce.task.profile to true:

>% hadoop jar hadoop-examples.jar v4.MaxTemperatureDriver \ -conf conf/hadoop-cluster.xml \ -D

mapreduce.task.profile=true \ input/ncdc/all max-temp

This runs the job as normal, but adds an -agentlib parameter to the Java command used to launch the

task containers on the node managers. You can control the precise parameter that is added by setting the

mapreduce.task.profile.params property. The default uses HPROF, a profiling tool that comes with the JDK that,

The profile output for each task is saved with the task logs in the userlogs subdirectory of the node

manager’s local log directory (alongside the syslog, stdout, and stderr files), and can be retrieved in the way

described in “Hadoop Logs”, according to whether log aggregation is enabled or not.

Hadoop produces logs in various places, and for various audiences. These are summarized in Table-2.

Table-2. Types of Hadoop logs

MapReduce log levels

MapReduce logs support various levels. You can configure the log levels for the MapReduce service

and tasks.

You can set log levels to any of the following values:

Level Description

DEBUG Logs all debug-level and informational messages.

INFO Logs all informational messages and more serious messages. This is the default log level.

WARN
Logs only those messages that are warnings or more serious messages. This is the default level

of debug information.

ERROR Logs only those messages that indicate error conditions or more serious messages.

FATAL Logs only those messages in which the system is unusable.

To modify the level of the log printed to the console, change the value of the log4j.rootLogger

property in the log configuration file

3. Understanding different logs produced by Map-Reduce

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 11

System logfiles

System logfiles produced by Hadoop are stored in $HADOOP_INSTALL/logs by default. This can be

changed in hadoop-env.sh.

Each Hadoop daemon running on a machine produces two logfiles.

The first is the log output written via log4j. This file, which ends in .log. Old logfiles are never deleted,

so you should arrange for them to be periodically deleted or archived, so as to not run out of disk space

on the local node.

The second logfile is the combined standard output and standard error log. This logfile, which ends in

.out, usually contains little or no output, since Hadoop uses log4j for logging. It is only rotated when

the daemon is restarted, and only the last five logs are retained. Old logfiles are suffixed with a number

between 1 and 5, with 5 being the oldest file.

Audit Logging

HDFS has the ability to log all filesystem access requests, a feature that some organizations require for

auditing purposes. Audit logging is implemented using log4j logging at the INFO level, and in the

default configuration it is disabled.You can enable audit logging by replacing WARN with INFO, and

the result will be a log line written to the namenode’s log for every HDFS event.

It is a good idea to configure log4j so that the audit log is written to a separate file and isn’t mixed up

with the namenode’s other log entries.

Job History Logging

Job history refers to the events and configuration for a completed job. It is retained whether the job was

successful or not, in an attempt to provide interesting information for the user running a job.

Job history files are stored on the local filesystem of the jobtracker in a history subdirectory of the logs

directory.

The jobtracker’s history files are kept for 30 days before being deleted by the system.

The history log includes job, task, and attempt events, all of which are stored in a plaintext file. The

history for a particular job may be viewed through the web UI, or via the command line, using hadoop

job -history (which you point at the job’s output directory).

MapReduce task logs

These are accessible throughthe web UI, which is the most convenient way to view them. You

can also find the logfiles on the local filesystem of the tasktracker that ran the task attempt, in a

directory named by the task attempt. If task JVM reuse is enabled, then each task attempts will be

found in each logfile. It is straightforward to write to these logfiles. Anything written to standard

output, or standard error, is directed to the relevant logfile.

The default log level is INFO, so DEBUG level messages do not appear in the syslog task log

file. However, sometimes you want to see these messages—to do this set mapred.map.child.log.level or

mapred.reduce.child.log.level, as appropriate (from 0.22). For example, in this case we could set it for

the mapper to see the map values in the log as follows:

>% hadoop jar hadoop-examples.jar LoggingDriver -conf conf/hadoop-cluster.xml \-D

mapred.map.child.log.level=DEBUG input/ncdc/sample.txt logging-out

There are some controls for managing retention and size of task logs. By default, logs are deleted after

a minimum of 24 hours (set using the mapred.userlog.retain.hoursproperty). You can also set a cap on

the maximum size of each logfile using the mapred.userlog.limit.kb property, which is 0 by default,

meaning there is no cap.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 12

The time-honored way of debugging programs is via print statements, and this is certainly possible in

Hadoop. However, there are complications to consider: with programs running on tens, hundreds, or thousands

of nodes, how do we find and examine the output of the debug statements, which may be scattered across these

nodes?

For this particular case, where we are looking for (what we think is) an unusual case, we can use a

debug statement to log to standard error, in conjunction with a message to update the task’s status message to

prompt us to look in the error log. The web UI makes this easy, as we will see.

We also create a custom counter to count the total number of records with implausible temperatures in

the whole dataset. This gives us valuable information about how to deal with the condition—if it turns out to be

a common occurrence, then we might need to learn more about the condition and how to extract the temperature

in these cases, rather than simply dropping the record. In fact, when trying to debug a job, you should always

ask yourself if you can use a counter to get the information you need to find out what’s happening. Even if you

need to use logging or a status message, it may be useful to use a counter to gauge the extent of the problem.

If the amount of log data you produce in the course of debugging is large, then you’ve got a couple of

options. The first is to write the information to the map’s output, rather than to standard error, for analysis and

aggregation by the reduce. This approach usually necessitates structural changes to your program, so start with

the other techniques

You can write a program (in MapReduce of course) to analyze the logs produced by your job. We add

our debugging to the mapper, as opposed to the reducer, as we want to find out what the source data causing the

anomalous output looks like:

If the temperature is over 100°C (represented by 1000, since temperatures are in tenths of a degree),

- we print a line to standard error with the suspect line, as well as updating the map’s status message
using the setStatus() method on Context directing us to look in the log. We also increment a counter,

which in Java is represented by a field of an enum type. In this program, we have defined a single field

OVER_100 as a way to count the number of records with a temperature of over 100°C.

With this modification, we recompile the code, re-create the JAR file, then rerun the job, and while it’s running

go to the tasks page. The tasks page The job page has a number of links for look at the tasks in a job in more

detail. For example, by clicking on the “map” link, you are brought to a page that lists information for all of the

4. Debugging the Map- Reduce jobs.

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 13

map tasks on one page. You can also see just the completed tasks. The screenshot in Figure 5-7 shows a portion

of this page for the job run with our debugging statements.

Each row in the table is a task, and it provides such information as the start and end times for each task, any

errors reported back from the tasktracker, and a link to view the counters for an individual task.

The “Status” column can be helpful for debugging, since it shows a task’s latest status message. Before a task

starts, it shows its status as “initializing,” then once it starts reading records it shows the split information for the

split it is reading as a filename with a byte offset and length. You can see the status we set for debugging for

task task_200904110811_0003_m_000044, so let’s click through to the logs page to find the associated debug
message. (Notice, too, that there is an extra counter for this task, since our user counter has a nonzero count for

this task.)

The task details page From the tasks page, you can click on any task to get more information about it. The task

details page, shown in Figure 5-8, shows each task attempt. In this case, there was one task attempt, which

completed successfully. The table provides further useful data, such as the node the task attempt ran on, and

links to task logfiles and counters.

The “Actions” column contains links for killing a task attempt. By default, this is disabled, making the web UI a

read-only interface. Set webinterface.private.actions to true to enable the actions links.

Figure 5-7. Screenshot of the tasks page

Figure 5-8. Screenshot of the task details page

For map tasks, there is also a section showing which nodes the input split was located on. By following

one of the links to the logfiles for the successful task attempt (you can see the last 4 KB or 8 KB of each logfile,

INTRODUCTION TO BIG-DATA: Map-Reduce Jobs Unit-4

 14

or the entire file), we can find the suspect input record that we logged (the line is wrapped and truncated to fit on

the page):

Temperature over 100 degrees for input:

0335999999433181957042302005+37950+139117SAO+0004RJSNV020113590031500703569999994332019

57010100005+35317+139650SAO +000899999V02002359002650076249N004000599+0067...

This record seems to be in a different format to the others. For one thing, there are spaces in the line, which are

not described in the specification.

When the job has finished, we can look at the value of the counter we defined to see how many records over

100°C there are in the whole dataset. Counters are accessible via the web UI or the command line:

>% hadoop job -counter job_200904110811_0003 'v4.MaxTemperatureMapper$Temperature'

\OVER_100

3

The -counter option takes the job ID, counter group name (which is the fully qualified classname here), and the

counter name (the enum name). There are only three malformed records in the entire dataset of over a billion

records.

Throwing out bad records is standard for many big data problems, although we need to be careful in this case,

since we are looking for an extreme value—the maximum temperature rather than an aggregate measure. Still,

throwing away three records is probably not going to change the result.

Case studies of Big Data analytics using Map-Reduce programming unit-5

1

Unit-5:

Case studies of Big Data analytics using Map-Reduce programming

1. K-Means clustering

2. using Big Data analytics libraries using Mahout.

What is Big Data Analytics?

Big data analytics is the use of advanced analytic techniques against very large, diverse data sets

that include different types such as structured/unstructured and streaming/batch and different sizes from

terabytes to zettabytes. Big data is a term applied to data sets whose size or type is beyond the ability of

traditional relational databases to capture, manage, and process the data with low-latency. And it has one

or more of the following characteristics – high volume, high velocity, or high variety. Big data comes

from sensors, devices, video/audio, networks, log files, transactional applications, web, and social media -

much of it generated in real time and in a very large scale.

Analyzing big data allows analysts, researchers, and business users to make better and faster

decisions using data that was previously inaccessible or unusable. Using advanced analytics techniques

such as text analytics, machine learning, predictive analytics, data mining, statistics, and natural language

processing, businesses can analyze previously untapped data sources independent or together with their

existing enterprise data to gain new insights resulting in significantly better and faster decisions.

What is Machine Learning?

Machine learning is a branch of science that deals with programming the systems in such a way

that they automatically learn and improve with experience. Here, learning means recognizing and

understanding the input data and making wise decisions based on the supplied data.

It is very difficult to cater to all the decisions based on all possible inputs. To tackle this problem,

algorithms are developed. These algorithms build knowledge from specific data and past experience with

the principles of statistics, probability theory, logic, combinatorial optimization, search, reinforcement

learning, and control theory.

The developed algorithms form the basis of various applications such as:

• Vision processing

• Language processing

• Forecasting (e.g., stock market trends)

• Pattern recognition

• Games

• Data mining

• Expert systems

• Robotics

Machine learning is a vast area and it is quite beyond the scope of this tutorial to cover all its features.

There are several ways to implement machine learning techniques, however the most commonly used

ones are supervised and unsupervised learning.

INTRODUCTION

G B Gangadhar

Case studies of Big Data analytics using Map-Reduce programming unit-5

2

Supervised Learning

Supervised learning deals with learning a function from available training data. A supervised learning

algorithm analyzes the training data and produces an inferred function, which can be used for mapping

new examples. Common examples of supervised learning include:

• classifying e-mails as spam,

• labeling webpages based on their content, and

• voice recognition.

There are many supervised learning algorithms such as neural networks, Support Vector Machines

(SVMs), and Naive Bayes classifiers. Mahout implements Naive Bayes classifier.

Unsupervised Learning

Unsupervised learning makes sense of unlabeled data without having any predefined dataset for its

training. Unsupervised learning is an extremely powerful tool for analyzing available data and look for

patterns and trends. It is most commonly used for clustering similar input into logical groups. Common

approaches to unsupervised learning include:

• k-means

• self-organizing maps, and

• hierarchical clustering

Clustering is used to form groups or clusters of similar data based on common characteristics. Clustering

is a form of unsupervised learning.

• Search engines such as Google and Yahoo! use clustering techniques to group data with similar

characteristics.

• Newsgroups use clustering techniques to group various articles based on related topics.

The clustering engine goes through the input data completely and based on the characteristics of the data,

it will decide under which cluster it should be grouped.

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e.,

data without defined categories or groups). The goal of this algorithm is to find groups in the data, with

the number of groups represented by the variable K. The algorithm works iteratively to assign each data

point to one of K groups based on the features that are provided. Data points are clustered based on

feature similarity. The results of the K-means clustering algorithm are:

1. The centroids of the K clusters, which can be used to label new data

2. Labels for the training data (each data point is assigned to a single cluster)

1. K-Means Clustering

Case studies of Big Data analytics using Map-Reduce programming unit-5

3

Rather than defining groups before looking at the data, clustering allows you to find and analyze the

groups that have formed organically. The "Choosing K" section below describes how the number of

groups can be determined.

Each centroid of a cluster is a collection of feature values which define the resulting groups. Examining

the centroid feature weights can be used to qualitatively interpret what kind of group each cluster

represents.

In general, we have n data points xi, i=1...n that have to be partitioned in k clusters. The goal is to assign

a cluster to each data point. K-means is a clustering method that aims to find the positions ci, i=1...k of

the clusters that minimize the distance from the data points to the cluster. K-means clustering solves

K-means algorithm

1. Clusters the data into k groups where k is

predefined.

2. Select k points at random as cluster centers.

3. Assign objects to their closest cluster center

according to the Euclidean distance function.

4. Calculate the centroid or mean of all objects

in each cluster.

5. Repeat steps 2, 3 and 4 until the same points

are assigned to each cluster in consecutive

rounds.

Case studies of Big Data analytics using Map-Reduce programming unit-5

4

K-Means is relatively an efficient method. However, we need to specify the number of clusters, in

advance and the final results are sensitive to initialization and often terminates at a local optimum.

Unfortunately there is no global theoretical method to find the optimal number of clusters. A practical

approach is to compare the outcomes of multiple runs with different k and choose the best one based on

a predefined criterion. In general, a large k probably decreases the error but increases the risk of

overfitting.

Example:

Suppose we want to group the visitors to a website using just their age (a one-dimensional space) as

follows:

15,15,16,19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65

Initial clusters:

Centroid (C1) = 16 [16]

Centroid (C2) = 22 [22]

Iteration 1:

C1 = 15.33 [15,15,16]

C2 = 36.25 [19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65]

Iteration 2:

C1 = 18.56 [15,15,16,19,19,20,20,21,22]

C2 = 45.90 [28,35,40,41,42,43,44,60,61,65]

Iteration 3:

C1 = 19.50 [15,15,16,19,19,20,20,21,22,28]

C2 = 47.89 [35,40,41,42,43,44,60,61,65]

Iteration 4:

C1 = 19.50 [15,15,16,19,19,20,20,21,22,28]

C2 = 47.89 [35,40,41,42,43,44,60,61,65]

No change between iterations 3 and 4 has been noted. By using clustering, 2 groups have been identified

15-28 and 35-65. The initial choice of centroids can affect the output clusters, so the algorithm is often

run multiple times with different starting conditions in order to get a fair view of what the clusters

should be.

15+15+16=46

46/3=15.33

Case studies of Big Data analytics using Map-Reduce programming unit-5

5

MapReduce Approach

MapReduce works on keys and values, and is based on data partitioning. Thus, the assumption of having

all data points in memory fails in this paradigm. We have to design the algorithm in such a manner that

the task can be parallelized and doesn’t depend on other splits for any computation (Figure below).

Figure . Single pass of K-Means on MapReduce

The Mappers do the distance computation and spill out a key-value pair – <centroid_id, datapoint>. This

step finds the associativity of a data point with the cluster.

The Reducers work with specific cluster_id and a list of the data points associated with it. A reducer

computes new means and writes to the new centroid file.

Now, based on the user’s choice, algorithm termination method works – specific number of iterations, or

comparison with centroid in the previous iteration.

Figure . K-Means Algorithm. Algorithm termination method is user-driven

Case studies of Big Data analytics using Map-Reduce programming unit-5

6

Mahout - Introduction

We are living in a day and age where information is available in abundance. The information

overload has scaled to such heights that sometimes it becomes difficult to manage our little

mailboxes! Imagine the volume of data and records some of the popular websites (the likes of

Facebook, Twitter, and Youtube) have to collect and manage on a daily basis. It is not uncommon

even for lesser known websites to receive huge amounts of information in bulk.

Normally we fall back on data mining algorithms to analyze bulk data to identify trends and draw

conclusions. However, no data mining algorithm can be efficient enough to process very large

datasets and provide outcomes in quick time, unless the computational tasks are run on multiple

machines distributed over the cloud.

We now have new frameworks that allow us to break down a computation task into multiple

segments and run each segment on a different machine. Mahout is such a data mining framework

that normally runs coupled with the Hadoop infrastructure at its background to manage huge

volumes of data.

What is Apache Mahout?

A mahout is one who drives an elephant as its master. The name comes from its close association

with Apache Hadoop which uses an elephant as its logo.

Hadoop is an open-source framework from Apache that allows to store and process big data in a

distributed environment across clusters of computers using simple programming models.

Apache Mahout is an open source project that is primarily used for creating scalable machine

learning algorithms. It implements popular machine learning techniques such as:

a. Recommendation

b. Classification

c. Clustering

Apache Mahout started as a sub-project of Apache’s Lucene in 2008. In 2010, Mahout became a

top level project of Apache.

Features of Mahout

The primitive features of Apache Mahout are listed below.

• The algorithms of Mahout are written on top of Hadoop, so it works well in distributed

environment. Mahout uses the Apache Hadoop library to scale effectively in the cloud.

• Mahout offers the coder a ready-to-use framework for doing data mining tasks on large

volumes of data.

• Mahout lets applications to analyze large sets of data effectively and in quick time.

• Includes several MapReduce enabled clustering implementations such as k-means, fuzzy k-

means, Canopy, Dirichlet, and Mean-Shift.

2. APACHE MAHOUT

Case studies of Big Data analytics using Map-Reduce programming unit-5

7

• Supports Distributed Naive Bayes and Complementary Naive Bayes classification

implementations.

• Comes with distributed fitness function capabilities for evolutionary programming.

• Includes matrix and vector libraries.

Applications of Mahout

• Companies such as Adobe, Facebook, LinkedIn, Foursquare, Twitter, and Yahoo use Mahout

internally.

• Foursquare helps you in finding out places, food, and entertainment available in a particular

area. It uses the recommender engine of Mahout.

• Twitter uses Mahout for user interest modelling.

• Yahoo! uses Mahout for pattern mining.

Getting started with Mahout

Getting up and running with Mahout is relatively straightforward. To start, you need to install the

following prerequisites:

JDK 1.6 or higher

Ant 1.7 or higher

If you want to build the Mahout source, Maven 2.0.9 or 2.0.10

You also need this article's sample code (see Download), which includes a copy of Mahout and its

dependencies. Follow these steps to install the sample code:

1. unzip sample.zip

2. cd apache-mahout-examples

3. ant install

Step 3 downloads the necessary Wikipedia files and compiles the code. The Wikipedia file used is

approximately 2.5 gigabytes, so download times will depend on your bandwidth.

a. Recommendation

Recommendation is a popular technique that provides close recommendations based on user

information such as previous purchases, clicks, and ratings.

• Amazon uses this technique to display a list of recommended items that you might be

interested in, drawing information from your past actions. There are recommender engines

that work behind Amazon to capture user behavior and recommend selected items based on

your earlier actions.

• Facebook uses the recommender technique to identify and recommend the “people you

may know list”.

Case studies of Big Data analytics using Map-Reduce programming unit-5

8

Building a recommendation engine:

Mahout currently provides tools for building a recommendation engine through the Taste library

— a fast and flexible engine for CF. Taste supports both user-based and item-based

recommendations and comes with many choices for making recommendations, as well as

interfaces for you to define your own. Taste consists of five primary components that work with

Users, Items and Preferences:

Data Model: Storage for Users, Items, and Preferences

User Similarity: Interface defining the similarity between two users

Item Similarity: Interface defining the similarity between two items

Recommender: Interface for providing recommendations

User Neighborhood: Interface for computing a neighborhood of similar users that can then be used

by the Recommenders

These components and their implementations make it possible to build out complex

recommendation systems for either real-time-based recommendations or offline recommendations.

Real-time-based recommendations often can handle only a few thousand users, whereas offline

recommendations can scale much higher. Taste even comes with tools for leveraging Hadoop to

calculate recommendations offline. In many cases, this is a reasonable approach that allows you to

meet the demands of a large system with a lot of users, items, and preferences.

b. Classification

Classification, also known as categorization, is a machine learning technique that uses known

data to determine how the new data should be classified into a set of existing categories.

Classification is a form of supervised learning.

• Mail service providers such as Yahoo! and Gmail use this technique to decide whether a

new mail should be classified as a spam. The categorization algorithm trains itself by

analyzing user habits of marking certain mails as spams. Based on that, the classifier

decides whether a future mail should be deposited in your inbox or in the spams folder.

Case studies of Big Data analytics using Map-Reduce programming unit-5

9

• iTunes application uses classification to prepare playlists.

How Classification Works

While classifying a given set of data, the classifier system performs the following actions:

• Initially a new data model is prepared using any of the learning algorithms.

• Then the prepared data model is tested.

• Thereafter, this data model is used to evaluate the new data and to determine its class.

Applications of Classification

• Credit card fraud detection - The Classification mechanism is used to predict credit card

frauds. Using historical information of previous frauds, the classifier can predict which

future transactions may turn into frauds.

• Spam e-mails - Depending on the characteristics of previous spam mails, the classifier

determines whether a newly encountered e-mail should be sent to the spam folder.

Naive Bayes Classifier

Mahout uses the Naive Bayes classifier algorithm. It uses two implementations:

Case studies of Big Data analytics using Map-Reduce programming unit-5

10

• Distributed Naive Bayes classification

• Complementary Naive Bayes classification

Naive Bayes is a simple technique for constructing classifiers. It is not a single algorithm for

training such classifiers, but a family of algorithms. A Bayes classifier constructs models to

classify problem instances. These classifications are made using the available data.

An advantage of naive Bayes is that it only requires a small amount of training data to estimate the

parameters necessary for classification.

For some types of probability models, naive Bayes classifiers can be trained very efficiently in a

supervised learning setting.

Despite its oversimplified assumptions, naive Bayes classifiers have worked quite well in many

complex real-world situations.

Procedure of Classification

The following steps are to be followed to implement Classification:

• Generate example data

• Create sequence files from data

• Convert sequence files to vectors

• Train the vectors

• Test the vectors

c. Clustering

Clustering is used to form groups or clusters of similar data based on common characteristics.

Clustering is a form of unsupervised learning.

• Search engines such as Google and Yahoo! use clustering techniques to group data with

similar characteristics.

• Newsgroups use clustering techniques to group various articles based on related topics.

The clustering engine goes through the input data completely and based on the characteristics of

the data, it will decide under which cluster it should be grouped.

Using Mahout, we can cluster a given set of data. The steps required are as follows:

• Algorithm You need to select a suitable clustering algorithm to group the elements of a

cluster.

• Similarity and Dissimilarity You need to have a rule in place to verify the similarity between

the newly encountered elements and the elements in the groups.

• Stopping Condition A stopping condition is required to define the point where no clustering

is required.

Case studies of Big Data analytics using Map-Reduce programming unit-5

11

Procedure of Clustering

To cluster the given data you need to -

• Start the Hadoop server. Create required directories for storing files in Hadoop File System.

(Create directories for input file, sequence file, and clustered output in case of canopy).

• Copy the input file to the Hadoop File system from Unix file system.

• Prepare the sequence file from the input data.

• Run any of the available clustering algorithms.

• Get the clustered data.

Mahout supports several clustering-algorithm implementations, all written in Map-Reduce, each with its

own set of goals and criteria:

Canopy: A fast clustering algorithm often used to create initial seeds for other clustering algorithms.

k-Means (and fuzzy k-Means): Clusters items into k clusters based on the distance the items are from the

centroid, or center, of the previous iteration.

Mean-Shift: Algorithm that does not require any a priori knowledge about the number of clusters and can

produce arbitrarily shaped clusters.

Dirichlet: Clusters based on the mixing of many probabilistic models giving it the advantage that it

doesn't need to commit to a particular view of the clusters prematurely.

SREE RAMA ENGINEERING COLLEGE
Approved by AICTE, New Delhi – Affiliated to JNTUA, Ananthapuramu

Accredited by NAAC with ‘A’ Grade

An ISO 9001:2015 & ISO 14001:2015 certified Institution

 Rami Reddy Nagar, Karakambadi road, Tirupati-517507

Report on Page-Rank Algortihm using Map-Reduce

Abstract:

This report presents my exploration of big data analytics, focusing on [Specific
Area/Dataset, e.g., customer purchase patterns from an e-commerce platform, social
media sentiment analysis related to a product launch, or weather data analysis for
predicting regional rainfall]. Utilizing [Tools/Techniques, e.g., Python with Pandas and
Scikit-learn, Hadoop/Spark, or cloud-based analytics platforms], I aimed to [Specific
Goals, e.g., identify key customer segments, understand public perception, or build a
predictive model]. This report outlines the data acquisition, processing, analysis, and key
findings, highlighting the potential of big data analytics in [Relevant Field].

1. Introduction:

The exponential growth of data, commonly referred to as "big data," presents both
challenges and opportunities. Big data analytics allows us to extract meaningful insights
from these vast datasets, enabling data-driven decision-making. This project aimed to
gain practical experience in applying big data analytics techniques to a real-world dataset,
focusing on [Specific Area/Dataset]. I chose this area because [Reasons for Choosing
the Area, e.g., personal interest, relevance to course material, or potential for practical
application].

2. Data Acquisition and Preprocessing:

Data Source: The dataset was obtained from [Source of Data, e.g., Kaggle, a public API,
or a simulated dataset]. It consisted of [Brief Description of Data, e.g., CSV files, JSON
data, or database tables] containing [Key Features of Data, e.g., customer IDs, product
names, timestamps, or text data]. Key Aspects of Describing a Data Source:

 Origin:
o Where did the data come from? Was it from a public repository, a private

database, a web API, or collected through sensors?
o Is it internal data (from within an organization) or external data (from outside

sources)?
 Type:

o What format is the data in? (e.g., CSV, JSON, XML, SQL database, text
files, images, videos)

o Is it structured, semi-structured, or unstructured?

 Volume:
o Provide an idea of the size of the dataset. (e.g., number of records, file size)

 Accessibility:
o How was the data accessed? (e.g., downloaded directly, accessed via API,

queried from a database)
 Context:

o What does the data represent? (e.g., customer transactions, social media
posts, sensor readings)

Common Data Source Examples:

 Social Media:
o Twitter API: For retrieving tweets and user data.
o Facebook Graph API: For accessing Facebook data.
o LinkedIn API: For professional networking data.

 Web Data:
o Web scraping: Extracting data from websites.
o Public APIs: Data provided by websites or online services.
o Web server logs: Records of website traffic.

 Transactional Data:
o Retail point-of-sale (POS) systems: Data from sales transactions.
o Online e-commerce platforms: Customer purchase history.
o Financial databases: Banking transactions, stock market data.

 Sensor Data:
o IoT devices: Data from sensors in various applications (e.g., environmental

monitoring, industrial automation).
o GPS data: Location information.
o Medical devices: Patient health data.

 Public Datasets:

o Kaggle: A platform for data science competitions and datasets.
o Government websites: Data from agencies like the U.S. Census Bureau or

data.gov.
o Academic research datasets.

 Databases:
o SQL databases (MySQL, PostgreSQL, etc.)

o NoSQL databases (MongoDB, Cassandra, etc.)

Example "Data Source" Descriptions:

 "The dataset was obtained from the Kaggle 'E-commerce Customer Behavior'
dataset, which contains anonymized customer purchase records in CSV format."

 "Social media data was collected using the Twitter API, retrieving tweets containing
specific hashtags related to the product launch."

 "Sensor data was gathered from a network of IoT devices deployed in a

manufacturing facility, recording temperature and pressure readings in real-time."

Data Cleaning: The initial dataset required significant cleaning and preprocessing. This

involved:

 Accuracy: Dirty data leads to inaccurate results.
 Reliability: Clean data ensures your analysis is trustworthy.
 Efficiency: Clean data speeds up processing and analysis.

 Validity: Clean data makes your findings more valid.

Key Aspects to Cover in Your Report:

1. Identify Data Quality Issues:

o Start by explaining the initial state of your data. What problems did you find?
o Common issues include:

 Missing Values: Empty cells or null values.
 Duplicate Records: Identical or near-identical rows.
 Inconsistent Formatting: Dates, times, or text in different formats.
 Outliers: Extreme values that deviate from the norm.
 Incorrect Data Types: Text stored as numbers, or vice versa.
 Inconsistent Labels: Variations in category names.
 Structural Errors: Typos, misspellings, or incorrect capitalization.

2. Describe Cleaning Methods:

o Explain the specific techniques you used to address each issue.
o Examples:

 Handling Missing Values:
 Deletion: Removing rows or columns with missing values

(when appropriate).
 Imputation: Replacing missing values with:

 Mean, median, or mode.
 Predicted values from a model.
 Values from other similar records.

 Removing Duplicates:

 Using functions to identify and remove duplicate rows.
 Standardizing Formats:

 Converting dates to a consistent format (e.g., YYYY-MM-DD).
 Standardizing text capitalization and spacing.

 Handling Outliers:
 Removing outliers (if they are errors).
 Transforming outliers (e.g., using logarithmic

transformations).
 Using methods robust to outliers.

 Correcting Data Types:

 Converting strings to numbers, or vice versa.
 Correcting Inconsistent Labels:

 Using find and replace functions.
 Correcting Structural Errors:

 Using string manipulation functions.
3. Document Your Process:

o Explain why you chose each method.
o If you made decisions that could affect the results, explain your reasoning.

o If you use code, provide examples or snippets.
o It is very important to document what you did, so that your work can be

reproduced.
4. Validate Your Results:

o After cleaning, check your data to ensure that the issues have been
resolved.

o Use summary statistics, visualizations, or data profiling tools.

Example Phrases:

 "Missing values in the 'age' column were imputed using the median age."
 "Duplicate records were removed based on the 'customer ID' and 'transaction

timestamp' columns."
 "Date formats were standardized to YYYY-MM-DD to ensure consistency."
 "Outliers in the 'sales amount' column were identified using the interquartile range

(IQR) method and removed."

o Handling missing values using [Methods used, e.g., imputation, deletion].
o Removing duplicate records.
o Standardizing data formats and units.
o Converting data types as needed.
o [Specific cleaning steps related to your data, e.g. tokenization of text,

geospatial data processing].
 Data Transformation: To prepare the data for analysis, the following

transformations were applied:
o [Feature engineering, e.g., creating new features from existing ones].
o [Data aggregation, e.g., summarizing data by time period or category].
o [Data normalization or standardization].

3. Analysis and Methodology:

 Tools and Technologies: The analysis was performed using [List of Tools, e.g.,

Python (Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn), SQL, Apache Spark].
 Analytical Techniques:

o Descriptive Analysis: [Describe the descriptive analysis performed, e.g.,
calculating summary statistics, visualizing data distributions, identifying
trends].

o Exploratory Data Analysis (EDA): [Describe the EDA performed, e.g.,

correlation analysis, scatter plots, heatmaps, identifying patterns and
relationships].

o Predictive Modeling (if applicable): [Describe the predictive models used,

e.g., regression, classification, clustering, explain the model selection
process, and evaluation metrics].

o Sentiment Analysis(if applicable):[Describe the sentiment analysis
performed, the tools used, and the results obtained].

o Cluster analysis(if applicable):[Describe the clustering performed, the

algorithms used, and the results obtained].

4. Results and Findings:

1. Key Findings: [Summarize the key findings from the analysis, e.g., significant
customer segments, influential factors in sentiment, accurate predictions from the
model].

2. Focus on Insights, Not Just Results:

o Don't just list numbers or outputs. Explain what they mean in the context of
your research question or goals.

o Example: Instead of saying "The model accuracy was 85%," say "The
predictive model accurately identified customer segments with 85%
accuracy, enabling targeted marketing campaigns."

3. Highlight Significant Patterns and Trends:

o Identify and describe any notable patterns, trends, or correlations in your
data.

o Use clear and concise language.
o Example: "A strong positive correlation was observed between social media

engagement and product sales, suggesting that online marketing efforts
significantly impact revenue."

4. Quantify Your Findings:
o Whenever possible, use numbers and statistics to support your claims.
o Example: "Customer churn decreased by 15% after the implementation of

the new customer support program."
5. Visualize Your Findings:

o Use charts, graphs, and other visualizations to illustrate your key findings.
o Make sure your visualizations are clear, easy to understand, and relevant

to your analysis.
o Provide captions and explanations for each visualization.
o Example: Include a bar chart showing the distribution of customer segments

or a line graph showing the trend of sales over time.
6. Address Your Research Question or Goals:

o Ensure that your key findings directly address the research question or
goals you stated in your introduction.

o Example: If your goal was to identify factors influencing customer
satisfaction, your key findings should highlight those factors.

7. Prioritize Your Findings:
o Not all findings are equally important. Focus on the most significant and

relevant insights.
o Organize your findings logically, perhaps from most to least important.

8. Provide Context:
o Explain the implications of your findings. What do they mean for the

business, organization, or field of study?
o Example: "The identification of high-value customer segments allows for

targeted marketing strategies, potentially increasing customer lifetime value
and revenue."

Examples of Strong "Key Findings" Statements:

 "The analysis revealed a significant seasonal trend in product sales, with peak
sales occurring during the holiday season."

 "Sentiment analysis of social media data indicated a predominantly positive public
perception of the new product launch."

 "The predictive model identified three key factors influencing customer churn:
customer service interactions, product usage frequency, and pricing."

 "Cluster analysis revealed distinct customer segments with varying purchasing
behaviors, enabling personalized marketing campaigns."

 "The analysis of sensor data showed a correlation between temperature
fluctuations and equipment performance, suggesting a need for improved

temperature control."

Tips for Writing Effective "Key Findings":

 Be clear and concise.
 Use strong verbs.
 Avoid jargon.
 Focus on the "so what?" factor.

 Support your findings with evidence.

 Visualizations: [Include relevant visualizations, e.g., charts, graphs, plots, to

illustrate the findings. Provide captions and explanations for each visualization].

 Clarity: They simplify complex data, making it easier to identify patterns and

trends.
 Communication: They effectively convey findings to a wider audience, including

those without technical expertise.
 Exploration: They facilitate data exploration and discovery.

 Impact: They make your report more engaging and memorable.

Types of Visualizations and When to Use Them:

 Bar Charts:

o Used to compare categorical data.
o Example: Comparing sales across different product categories.

 Line Charts:
o Used to show trends over time.

o Example: Tracking website traffic or sales growth over months.

 Scatter Plots:
o Used to show the relationship between two numerical variables.

o Example: Showing the correlation between advertising spend and sales.

 Histograms:

o Used to show the distribution of a single numerical variable.
o Example: Showing the distribution of customer ages.

 Pie Charts:

o Used to show the proportion of different categories in a whole.
o Caution: Use sparingly, as they can be difficult to interpret with many

categories. Bar charts are often a better choice.
o Example: showing the percentage of customers from different regions.

 Heatmaps:

o Used to show the correlation between multiple variables or the frequency of
data points.

o Example: Showing customer purchase patterns across different product
categories and time periods.

 Box Plots:

o Used to show the distribution and outliers of a numerical variable.
o Example: showing the distribution of customer spending, and the presence

of outliers.

 Word Clouds:

o Used to visualize the frequency of words in text data.
o Example: displaying the most used words in customer reviews.

 Geospatial Visualizations (Maps):

o Used to show data related to geographic locations.
o Example: displaying sales by region or customer density on a map.

Best Practices for Creating Visualizations:

 Choose the Right Visualization: Select the visualization that best suits the type

of data and the message you want to convey.
 Keep It Simple: Avoid clutter and unnecessary details. Focus on the key

message.
 Use Clear Labels and Titles: Make sure your visualizations are easy to

understand.
 Use Consistent Formatting: Maintain consistent colors, fonts, and styles

throughout your report.
 Provide Captions and Explanations: Explain what the visualization shows and

highlight key insights.
 Use Color Effectively: Use color to highlight important data points and avoid

using too many colors.
 Ensure Accessibility: Consider colorblindness and other accessibility issues.
 Scale Appropriately: Make sure your axes are scaled appropriately to avoid

misleading interpretations.
 Use Interactive Visualizations (If Possible): Interactive visualizations can allow

users to explore the data in more detail.

Example of Visualizations in a Report:

 "Figure 1: Bar chart showing the distribution of customer segments based on their
purchasing behavior."

 "Figure 2: Line graph showing the trend of website traffic over the past year."
 "Figure 3: Scatter plot showing the correlation between advertising spend and

sales revenue."
 "Figure 4: Heatmap showing the correlation between different product categories

purchased."

Tools for Creating Visualizations:

 Python (Matplotlib, Seaborn, Plotly)
 R (ggplot2)
 Tableau
 Power BI

 Google Data Studio.

 Interpretation: [Interpret the findings in the context of the research question or

goals. Discuss the implications of the results].

 Contextualize Your Findings:

 Relate your findings back to your research question, goals, or the problem you
were trying to solve.

 Explain how your results fit within the broader context of your field or industry.
 Example: "The observed increase in customer churn during promotional periods

suggests a need for improved customer support during peak demand."

 Explain the "Why" Behind the "What":

 Don't just state what you found; explain why it happened.
 Look for underlying causes and mechanisms.
 Example: "The correlation between social media engagement and sales could be

attributed to increased brand awareness and positive word-of-mouth marketing."

 Draw Meaningful Conclusions:

 Summarize the key takeaways from your analysis.
 Highlight the most significant insights and their implications.
 Example: "The identification of high-value customer segments allows for targeted

marketing strategies, potentially leading to increased customer lifetime value."

 Discuss the Practical Implications:

 Explain how your findings can be used to inform decision-making or improve
processes.

 Provide actionable recommendations based on your analysis.
 Example: "Based on the analysis, we recommend implementing a personalized

recommendation system to improve customer engagement and increase sales."

 Acknowledge Limitations and Potential Biases:

 Discuss any limitations of your data or analysis that could affect the interpretation
of your findings.

 Acknowledge potential biases in your data or methodology.
 Example: "The analysis was limited by the availability of historical data, which may

have affected the accuracy of the predictive model."

 Avoid Overinterpretation:

 Be careful not to draw conclusions that are not supported by your data.
 Avoid making generalizations beyond the scope of your analysis.
 Stick to what your data shows.

 Connect Findings to Existing Knowledge:

 Compare your findings to previous research or industry benchmarks.
 Discuss how your results confirm, contradict, or expand upon existing knowledge.
 Example: "The observed trend aligns with previous research on customer behavior

in online retail, which suggests that personalized recommendations can increase
sales."

 Use Clear and Concise Language:

 Avoid jargon and technical terms that may be unfamiliar to your audience.
 Use clear and straightforward language to explain your findings.

5. Discussion and Conclusion:

 Discussion: [Discuss the limitations of the analysis, potential sources of error, and

areas for future research].

1. Summarize Key Findings in Context:

o Briefly restate the most significant findings and their implications.
o Connect these findings to the broader context of your research question or

problem.
o Emphasize the "so what?" factor.

2. Acknowledge and Discuss Limitations:
o Be transparent about the limitations of your data, methodology, and

analysis.
o Examples of limitations:

 Data Limitations:
 Incomplete or biased data.
 Small sample size.
 Limited data sources.
 Data quality issues.

 Methodological Limitations:

 Choice of analytical techniques.
 Assumptions made during analysis.
 Potential biases in the methodology.

 Computational Limitations:

 Limited processing power.
 Issues with software or tools.

o Explain how these limitations might have affected your results and
interpretations.

o Being honest about limitations strengthens your report's credibility.
3. Address Potential Biases:

o Discuss any potential biases that could have influenced your data or
analysis.

o Explain how you attempted to mitigate these biases.
o Example: "The sentiment analysis may be biased towards English-

language tweets, as the natural language processing model was primarily
trained on English text."

4. Compare and Contrast with Existing Research:
o Discuss how your findings compare to previous research or industry

benchmarks.
o Highlight any similarities or differences and explain potential reasons for

these variations.
o This demonstrates your understanding of the existing literature and helps

contextualize your findings.
5. Suggest Future Research Directions:

o Based on your findings and limitations, propose areas for future research.
o Identify unanswered questions or potential extensions of your work.
o Example: "Future research could explore the impact of personalized

recommendations on customer satisfaction using a larger and more diverse
dataset."

o Suggest ways to improve the methodology or data collection process.
6. Discuss the Practical Implications of Your Findings:

o Explain how your findings can be used to inform decision-making or improve
processes.

o Provide actionable recommendations based on your analysis.
o Emphasize the real-world impact of your work.

7. Reflect on the Process:

o Briefly discuss any challenges you encountered during the project and how
you overcame them.

o Share any lessons learned or insights gained from the experience.
o This adds a personal touch and demonstrates your critical thinking skills.

Example Phrases:

 "While the analysis revealed a strong correlation, it's important to acknowledge the
limitations of the dataset, which primarily consisted of data from a single region."

 "The findings align with previous research on..., but further investigation is needed
to explore the underlying mechanisms."

 "Future research could explore the impact of... by utilizing a larger and more
diverse dataset."

 "One limitation of this study was..."
 "Despite the limitations, this study provides valuable insight into..."

Key Considerations:

 Maintain a balanced and objective tone.
 Avoid overstating the significance of your findings.
 Focus on providing a thoughtful and critical analysis of your work.

 Conclusion: [Summarize the main conclusions of the project and reiterate the
potential of big data analytics in [Relevant Field]. Reflect on the learning

experience and the skills gained].

1. Restate the Main Purpose and Research Question:
o Briefly remind the reader of the project's objective and the research

question you aimed to answer.
o This provides context and reinforces the importance of your work.

2. Summarize the Key Findings:
o Briefly recap the most significant insights and results from your analysis.
o Focus on the key takeaways that address your research question.
o Avoid introducing new information or details.

3. Emphasize the Significance and Implications:
o Highlight the practical implications of your findings and their significance to

the field or industry.
o Explain how your work contributes to existing knowledge or solves a real-

world problem.
o Emphasize the "so what?" factor.

4. Reiterate the Value of Big Data Analytics:
o Briefly discuss how your project demonstrates the power and potential of

big data analytics.
o Highlight the benefits of using data-driven approaches for decision-making.

5. Provide a Clear and Concise Closing Statement:
o End with a strong and memorable statement that summarizes the overall

impact of your work.
o Leave the reader with a clear understanding of the project's key

contributions.

What to Avoid in Your Conclusion:

 Introducing new information or details: The conclusion should be a summary,

not a place for new data.
 Overstating the significance of your findings: Be realistic and avoid making

exaggerated claims.
 Apologizing for limitations: Acknowledge limitations in the discussion section,

but focus on the positive contributions of your work in the conclusion.
 Repeating the entire report: Keep the conclusion concise and focused on the

key takeaways.

 Vague or generic statements: Be specific and provide concrete examples of the

impact of your work.

Example Conclusion Phrases:

 "In conclusion, this project successfully demonstrated the effectiveness of
[analytical technique] in [specific application], providing valuable insights into [key
findings]."

 "The analysis revealed a clear correlation between [variables], highlighting the
potential for [practical application] through data-driven decision-making."

 "This study underscores the importance of leveraging big data analytics to [achieve
specific goal] and provides a foundation for future research in [related field]."

 "Ultimately, this project highlights the transformative power of big data analytics in
[industry/field], enabling organizations to [achieve specific benefit]."

 "By identifying [key findings], this research contributes to a deeper understanding
of [topic] and offers actionable insights for [target audience]."

 Lessons Learned: [Describe the challenges you faced and how you overcame

them. Describe what you have learned from this project].

 Demonstrates Reflection: It shows that you've thought critically about your

experience.
 Highlights Growth: It showcases the skills and knowledge you've gained.
 Provides Practical Insights: It offers valuable takeaways for yourself and others.
 Adds a Personal Touch: It makes your report more engaging and relatable.

What to Include in "Lessons Learned":

1. Technical Skills and Knowledge:
o What specific technical skills did you acquire or improve? (e.g., data

cleaning, data visualization, machine learning algorithms, specific software
or programming languages)

o What new concepts or theories did you learn?
o Example: "I learned how to effectively use Pandas for data cleaning and

manipulation, which significantly improved the efficiency of my analysis."
2. Problem-Solving and Analytical Skills:

o What challenges did you encounter during the project, and how did you
overcome them?

o What problem-solving strategies did you develop?
o What did you learn about the process of data analysis?
o Example: "I learned the importance of thoroughly exploring the data before

applying any analytical techniques. I realized that a deep understanding of
the data is crucial for accurate results."

3. Data Management and Organization:

o What did you learn about organizing and managing large datasets?
o What best practices did you discover for data storage and retrieval?

o Example: "I learned the importance of version control for data and code,
which helped me avoid errors and track changes."

4. Communication and Collaboration (if applicable):
o If you worked in a team, what did you learn about collaboration and

communication?
o How did you improve your ability to communicate complex data insights?
o Example: "Working in a team helped me improve my communication skills,

as I learned how to effectively explain complex data insights to non-
technical team members."

5. Time Management and Project Planning:

o What did you learn about managing your time and planning a large project?
o How did you prioritize tasks and meet deadlines?
o Example: "I learned the importance of breaking down a large project into

smaller, manageable tasks and setting realistic deadlines."
6. Areas for Improvement:

o What would you do differently if you were to do the project again?
o What areas do you want to improve in the future?
o Example: "In the future, I would like to explore more advanced machine

learning algorithms and techniques to improve the accuracy of my predictive
models."

7. Unexpected Insights:
o Were there any unexpected turns, or insights that you gained that you

where not expecting?
o Example: "I was surprised by how much of the project was dedicated to

cleaning data. I now have a much greater appreciation for the importance
of quality data."

Tips for Writing "Lessons Learned":

 Be specific and provide concrete examples.
 Be honest and reflective.
 Focus on the positive aspects of your learning experience.

 Keep it concise and relevant to the project.

6. References:

 [List of references used, e.g., academic papers, books, websites, software

documentation].

7. Appendix (Optional):

 [Include any supplementary materials, e.g., code snippets, detailed tables,

additional visualizations].

Example of a specific section:

4. Results and Findings (Example: Customer Purchase Patterns):

"The analysis revealed three distinct customer segments based on their purchasing
behavior. Segment 1, "High Spenders," comprised customers with frequent and high-
value purchases. Segment 2, "Occasional Buyers," consisted of customers with
infrequent purchases and moderate spending. Segment 3, "Budget Shoppers," included
customers with frequent purchases of low-value items. A heatmap of product categories
purchased by each segment showed clear differences in their preferences. For instance,
High Spenders tended to purchase electronics and luxury goods, while Budget Shoppers
focused on household essentials. A predictive model, using a random forest classifier,
achieved an accuracy of 85% in predicting customer segment based on purchase
history."

	Anatomy of a Distributed Application
	The Client/Server Model
	The Distributed Objects Model
	RMI
	The Genesis of an RMI Application

	CORBA
	The Genesis of a CORBA Application

	CORBA vs. RMI
	Advantage of Java Generics

	Example of Generics in Java
	Generic class
	Type Parameters
	Generic Method
	Java Generics Wildcards
	Java Generics Upper Bounded Wildcard
	Java Generics Unbounded Wildcard
	Java Generics Lower bounded Wildcard
	Subtyping using Generics Wildcard
	Java Generics Type Erasure

	Multitasking refers to a computer's ability to perform multiple jobs concurrently more than one program are running concurrently, e.g., UNIX
	A thread is a single sequence of execution within a program
	Multithreading refers to multiple threads of control within a single program each program can run multiple threads of control within it, e.g., Web Browser
	What Is a Socket?
	Socket class
	Important methods

	ServerSocket class
	Important methods

	Example of Java Socket Programming

	What is Big Data?
	Why MapReduce?
	How MapReduce works
	The overall process in detail
	How MapReduce Organizes Work?
	Input Data
	Example Program

	Compilation and Execution of Process Units Program
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Important Commands
	Usage
	Walk-through

	MapReduce log levels
	Report on Page-Rank Algortihm using Map-Reduce

