

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

(Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu–515 002 (A.P) India

Academic Regulations (R20) for B. Tech (Regular-Full time)

(Effective for the students admitted into I year from the Academic Year **2020-2021** onwards)

and

Academic Regulations (R20) for B.Tech (Lateral Entry Scheme)

(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year **2021-2022** onwards)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERISTY ANANTAPUR

AMENDMENT

in

B.TECH. R20 ACADEMIC REGULATIONS

(As per AICTE guidelines)

Applicable for the Regular Students admitted from the academic year 2021-22 onwards and for the Lateral Entry Students admitted from 2022-23 onwards

1. The course on Universal Human Values which was offered as a non-credit mandatory course will now be carrying 03 credits

This is compulsory subject for all UG Degree Course in Engineering & Technology, with 03 exclusive credits. Hence the overall credits of curriculum are 163 credits instead of 160 credits for regular and 124 credits instead of 121 for lateral entry students.

It is offered in 3rd semester for all the disciplines of Engineering & Technology

 Environmental Science which is a non-credit mandatory course will now be offered in 5th semester for all disciplines of Engineering & Technology

1. Award of the Degree

a) Award of the B.Tech. Degree

A student will be declared eligible for the award of the B.Tech. degree if he/she fulfils the following:

- i) Pursues a course of study for not less than four academic years and not more than eight academic years. However, for the students availing Gap year facility this period shall be extended by two years at the most and these two years would in addition to the maximum period permitted for graduation (Eight years).
- ii) Registers for 160 credits and secures all 160 credits.

b) Award of B.Tech. degree with Honours/Minor

A student will be declared eligible for the award of the B.Tech. with Honours/Minor if he/she fulfils the following:

- i) Student secures additional 20 credits fulfilling all the requisites of a B.Tech. program i.e., 160 credits
- ii) A student is permitted to register either for Honours or a Minor but not for both. Registering for Honours/Minor is optional.
- iii) Honours/Minor is to be completed simultaneously with B.Tech. programme.
- 2. Students, who fail to fulfil all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled. This clause shall be read along with clause 1 a) i).

3. Courses of study:

The following courses are offered at present as specializations for the B. Tech. program for non-autonomous, constituent & affiliated colleges from 2020-21

S. No.	Name of the Program	Program Code
1.	Civil Engineering	01
2.	Electrical and Electronics Engineering	02
3.	Mechanical Engineering	03
4.	Electronics and Communication Engineering	04
5.	Computer Science and Engineering	05
6.	Information Technology	12
7.	Food Technology	27
8.	Artificial Intelligence & Data Science	30
9.	Computer Science and Engineering (Artificial Intelligence)	31
10.	Computer Science and Engineering (Data Science)	32
	Computer Science and Engineering (Artificial Intelligence	
11.	& Machine Learning)	33
12.	Computer Science and Engineering (IoT)	35

and any other course as approved by the authorities of the University from time to time.

4. Admissions:

Admission to the B. Tech Program shall be made subject to the eligibility, qualifications and specialization prescribed by the A.P. State Government/University from time to time. Admissions shall be made either based on the merit rank obtained by the student in the common entrance examination conducted by the A.P. Government/University or any other order of merit approved by the A.P. Government/University, subject to reservations as prescribed by the Government/University from time to time.

5. Program related terms:

a) *Credit:* A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture/Tutorial) or two hours of practical work/field work per week.

Credit definition:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit
2 Hrs. Practical (Lab) per week	1 credit

- b) Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year.
- c) Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed courses.

6. Structure of the Undergraduate Programme

All courses offered for the undergraduate program (B. Tech.) are broadly classified as follows:

S.No.	Category	Code	Breakup of Credits
			(Total 160)
1.	Humanities and Social Science	HS	10.5
	including Management courses		
2.	Basic Science courses	BS	21
3.	Engineering Science Courses	ES	24
4.	Professional Core Courses	PC	51
5.	Professional Elective Courses	PE	15
6.	Open Elective Courses	OE	12
7.	Skill Oriented Courses	SC	10
8.	Internship, Project work	PR	16.5
9.	Non-credit Mandatory Courses	MC	Non credit

7. Course Classification:

All subjects/ courses offered for the undergraduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows. The University has followed the guidelines issued by AICTE/UGC.

S.No.	Broad Course	Course Category	Description	
	Classification		-	
1.	Foundation Core Courses	Foundation courses	Includes mathematics, physics and chemistry Courses; fundamental engineering courses; humanities, social sciences and management courses	
2.	Core Courses	Professional Core Courses (PC)	Includes subjects related to the parent discipline/department/branch of Engineering	
		Professional Elective Courses (PE)	Includes elective subjects related to the parent discipline/department/ branch of Engineering	
3.	Elective Courses	Open Elective Courses (OE)	Elective subjects which include interdisciplinary subjects or subjects in an area outside the parent discipline/ department/ branch of Engineering	
4.	Project & Internships	Project Internships	B.Tech. Project or Major Project Summer Internships – Community based and Industry Internships Industry oriented Full Semester Internship	
5.	Audit Courses	Mandatory noncredit courses	Covering subjects of developing desired attitude among the learners	

8. Programme Pattern

- i. Total duration of the of B. Tech (Regular) Programme is four academic years
- ii. Each academic year of study is divided into two semesters.
- iii. Minimum number of instruction days in each semester is 90.
- iv. There shall be mandatory student induction program for freshers, with a threeweek duration before the commencement of first semester. Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations etc., are included as per the guidelines issued by AICTE.
- v. All undergraduate students shall register for NCC/NSS/ activities. A student will be required to participate in an activity for two hours in a week either in third or fourth semester. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet based on participation, attendance, performance, and behaviour. If a student gets an unsatisfactory grade, he/she shall repeat the above activity in the subsequent years, to complete the degree requirements
- vi. Courses like Environmental Sciences, Universal Human Values, Indian Constitution, Design Thinking for Innovation and Employability Skills is offered as non-credit mandatory courses for all branches.
- vii. Increased flexibility for students through an increase in the elective component of the curriculum, with 05 Professional Elective courses and 04 Open Elective courses.
- viii. Professional Elective Courses, include the elective courses relevant to the chosen specialization/branch. Proper choice of professional elective courses can lead to students specializing in an emerging area within the chosen field of study.

- ix. Student can opt for any open elective other than open elective offered by his/her own department. While choosing the electives, students shall ensure that they do not opt for the courses with syllabus contents similar to that of their departmental core/elective courses.
- A pool of interdisciplinary/job-oriented/domain skill courses which are relevant to the industry are integrated into the curriculum of all disciplines. There shall be 05 skill-oriented courses offered during III to VII semesters. Among the five skill courses, four courses shall focus on the basic and advanced skills related to the domain/interdisciplinary courses and the other shall be a soft skills course.
- xi. Students shall undergo mandatory summer internships, for a minimum of six weeks duration at the end of second and third year of the programme. There shall also be mandatory full internship in the final semester of the programme along with the project work.
- xii. Undergraduate degree either with Honours or a Minor is introduced by the University for the students having good academic record
- xiii. Each college shall take measures to implement Virtual Labs (<u>https://www.vlab.co.in</u>) which provide remote access to labs in various disciplines of Engineering and will help student in learning basic and advanced concept through remote experimentation. Student shall be made to work on virtual lab experiments during the regular labs.
- xiv. Each college shall assign a faculty advisor/mentor after admission to a group of students from same department to provide guidance in courses registration / career growth / placements / opportunities for higher studies / GATE / other competitive exams etc.
- xv. Preferably 25% course work for the theory courses in every semester shall be conducted in the blended mode of learning.

9. Evaluation Process

The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. Summer Internships shall be evaluated for 50 marks, Full Internship &Project work in final semester shall be evaluated for 200 marks, mandatory courses with no credits shall be evaluated for 30 mid semester marks.

- i) For theory subject, the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination.
- ii) For practical subject, the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End- Examination.
- iii) If any course contains two different branch subjects, the syllabus shall be written in two parts with 3 units each (Part-A and Part-B)
- iv) If any subject is having both theory and practical components, they will be evaluated separately as theory subject and practical subject. However, they will be given same subject code with an extension of 'T' for theory subject and 'P' for practical subject.

a) Continuous Internal Evaluation

- For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination shall be evaluated for 30 marks of which 10 marks for objective paper with 20 objective type questions (20 minutes duration), 15 marks for subjective paper (90 minutes duration) and 5 marks for assignment.
- ii) Objective paper shall be set for maximum of 20 bits for 10 marks. Subjective paper shall contain 3 either or type questions (totally six questions from 1 to 6) of which student has to answer one from each either-or type question. Each question carries 5 marks.

Note:

- The objective paper with 20 objective type questions shall be prepared in line with the quality of competitive examinations questions.
- The subjective paper shall contain 3 either or type questions of equal weightage of 5 marks. Any fraction shall be rounded off to the next higher mark.
- The objective paper shall be conducted either online or offline by the respective institution on the day of subjective paper test.
- If conducted offline, the midterm examination shall be conducted first by distribution of the Objective paper, simultaneously marking the attendance, after 20 minutes the answered objective paper shall be collected back. The student is not allowed to leave the examination hall.

Then the descriptive question paper and the answer booklet shall be distributed. After 90minutes the answered booklets are collected back.

- The assignment shall contain numerical problems/software development. If subject is purely descriptive and does not have any numerical problems, then essay type question/term paper shall be given. It should be continuous assessment throughout the semester. There shall be five assignments one for each unit and the average marks shall be considered.
- iii) If the student is absent for the mid semester examination, no re-exam shall be conducted and mid semester marks for that examination shall be considered as zero.
- iv) First midterm examination shall be conducted for I, II units of syllabus with one either or type question from each unit and third either or type question from both the units. The second midterm examination shall be conducted for III, IV and V units with one either or type question from each unit.

v) Final mid semester marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage given to the better mid exam and 20% to the other. For Example:

Marks obtained in first mid: 25

Marks obtained in second mid: 20

Final mid semester Marks: (25x0.8) + (20x0.2) = 24

If the student is absent for any one midterm examination, the final mid semester marks shall be arrived at by considering 80% weightage to the marks secured by the student in the appeared examination and zero to the other. For Example:

Marks obtained in first mid: Absent

- Marks obtained in second mid: 25
- Final mid semester Marks: (25x0.8) + (0x0.2) = 20

b) End Examination Evaluation:

End examination of theory subjects shall have the following pattern:

- i) There shall be 6 questions and all questions are compulsory.
- ii) Question I shall contain 10 compulsory short answer questions for a total of 20marks such that each question carries 2 marks.
- iii) There shall be 2 short answer questions from each unit.
- a) In each of the questions from 2 to 6, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- iv) The questions from 2 to 6 shall be set by covering one unit of the syllabus for each question.

End examination of theory subjects consisting of two parts of different subjects, for Example: Basic Electrical &Electronics Engineering shall have the following pattern:

- i) Question paper shall be in two parts viz., Part A and Part B with equal weightage of 35 marks each.
- ii) In each part, question 1 shall contain 5 compulsory short answer questions for a total of 5 marks such that each question carries 1 mark.
- iii) In each part, questions from 2 to 4, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- iv) The questions from 2 to 4 shall be set by covering one unit of the syllabus for each question
- b) For practical courses, there shall be a continuous evaluation during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the laboratory shall be evaluated for 15 marks by the concerned laboratory teacher based on the regularity/record/viva and 15 marks for the internal test. The end examination shall be conducted by the concerned laboratory teacher and a senior expert in the subject from the same department.

In a practical subject consisting of two parts (Eg: Basic Electrical &Electronics Engineering Lab), the end examination shall be conducted for 35 marks in each part. Mid semester examination shall be evaluated as above for 30 marks in each part and final mid semester marks shall be arrived by considering the average of marks obtained in two parts.

c) For the subject having design and/or drawing, such as Engineering Drawing, the distribution of marks shall be 30 for mid semester evaluation and 70 for end examination.

Day-to-day work shall be evaluated for 15 marks by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm examinations in a semester for duration of 2 hours each for 15 marks with weightage of 80% to better mid marks and 20% for the other. The subjective paper shall contain 3 either or type questions of equal weightage of 5 marks. There shall be no objective paper in mid semester examination. The sum

of day-to-day evaluation and the mid semester marks will be the final sessional marks for the subject.

The end examination pattern for Engineering Graphics, shall consists of 5 questions, either/or type, of 14 marks each. There shall be no objective type questions in the end examination. However, the end examination pattern for other subjects related to design/drawing is mentioned along with the syllabus.

- d) There shall be no external examination for mandatory courses with zero credits. However, attendance shall be considered while calculating aggregate attendance and student shall be declared to have passed the mandatory course only when he/she secures 40% or more in the internal examinations. In case, the student fails, a re-examination shall be conducted for failed candidates for 30 marks satisfying the conditions mentioned in item 1 & 2 of the regulations.
- e) The laboratory records and mid semester test papers shall be preserved for a minimum of 3 years in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for.

10. Skill oriented Courses

- i) There shall be five skill-oriented courses offered during III to VII semesters.
- ii) Out of the five skill courses two shall be skill-oriented courses from the same domain. Of the remaining three skill courses, one shall be a soft skill course and the remaining two shall be skill-advanced courses from the same domain/Interdisciplinary/Job oriented.
- f) The course shall carry 100 marks and shall be evaluated through continuous assessments during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the class / laboratory shall be evaluated for 30 marks by the concerned teacher based on the regularity/assignments/viva/mid semester test. The end examination similar to practical examination pattern shall be conducted by the concerned teacher and an expert in the subject nominated by the principal.
- iii) The Head of the Department shall identify a faculty member as coordinator for the course. A committee consisting of the Head of the Department, coordinator and a senior Faculty member nominated by the Head of the Department shall monitor the evaluation process. The marks/grades shall be assigned to the students by the above committee based on their performance.
- iv) The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies or any other accredited bodies. If a student chooses to take a Certificate Course offered by external agencies, the credits shall be awarded to the student upon producing the Course Completion Certificate from

the agency. A committee shall be formed at the level of the college to evaluate the grades/marks given for a course by external agencies and convert to the equivalent marks/grades.

- v) The recommended courses offered by external agencies, conversions and appropriate grades/marks are to be approved by the University at the beginning of the semester. The principal of the respective college shall forward such proposals to the University for approval.
- vi) If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the University.

11. MOOCs through SWAYAM Platform:

There shall be five professional elective courses and four open elective courses, which are Choice Based Credit Courses (CBCC), offered from V semester onwards. Among them, one elective course shall be pursued through MOOCs. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM with the approval of Head of the Department. The Head of the Department shall appoint one mentor to monitor the student's assignment submissions given by SWAYAM. The student needs to earn a certificate by passing the exam. The student shall be awarded the credits assigned in the curriculum only by submission of the certificate. Examination fee, if any, will be borne by the student.

A Student must complete the SWAYAM MOOC course in all respects on or before 5 / 6 / 7 semester. Students' MOOC course score in terms of marks/grade/credits will be counted in their 5/6/7 semester marks sheet as the case may be. Students who have qualified in the proctored examinations conducted by the SWAYAM and apply for credit transfer as specified are exempted from appearing internal as well as external examination (for the specified equivalent credit course only) conducted by the university.

Necessary amendments in rules and regulations regarding adoption of SWAYAM MOOCS courses would be proposed from time to time.

Credit Equivalence for SWAYAM MOOCs Courses: Courses of 04 weeks duration: 01 Credit Courses of 08 weeks duration: 02 Credits Courses of 12 weeks duration: 03 Credits Courses of 16 weeks duration: 04 Credits

12. Credit Transfer Policy

Adoption of MOOCs is mandatory for all students, to enable Blended model of teaching-learning as also envisaged in the NEP 2020. As per University Grants

Commission (Credit Framework for Online Learning Courses through SWAYAM) Regulation, 2016, the University shall allow up to a maximum of 40% of the total courses being offered in a particular Programme in a semester through the Online Learning courses through SWAYAM platform (<u>www.swayam.gov.in</u>).

- i) The University shall offer credit mobility for MOOCs and give the equivalent credit weightage to the students for the credits earned through online learning courses through SWAYAM platform.
- ii) The online learning courses available on the SWAYAM platform will be considered for credit transfer. SWAYAM course credits are as specified in the platform.
- iii) Student registration for the MOOCs shall be only through the institution, it is mandatory for the student to share necessary information with the institution
- iv) Credit transfer policy will be applicable to the Professional & Open Elective courses offered by the university under Choice Based Credit System (CBCS).
- v) The institution shall select the courses to be permitted for credit transfer through SWAYAM. However, while selecting courses in the online platform institution would essentially avoid the courses offered through the curriculum as it may otherwise lead to duplication and repetition of the same course
- vi) The University/institution shall notify at the beginning of semester the list of the online learning courses eligible for credit transfer in the forthcoming Semester.
- vii) The institution shall also ensure that the student has to complete the course and produce the course completion certificate as per the academic schedule given for the regular courses in that semester
- viii)The institution shall designate a faculty member as a Mentor for each course to guide the students from registration till completion of the credit course.
- ix) The university shall ensure no overlap of SWAYAM MOOC exams with that of the university examination schedule. In case of delay in SWAYAM results, the university will re-issue the marks sheet for such students.
- x) Student pursuing courses under MOOCs shall acquire the required credits only after successful completion of the course and submitting a certificate issued by the competent authority along with the percentage of marks and grades.
- xi) The institution shall submit the following to the examination section of the university:
 - a) List of students who have passed MOOC courses in the current semester along with the certificates of completion.
 - b) Undertaking form filled by the students for credit transfer.
- xii) The university shall resolve any issues that may arise in the implementation of this policy from time to time and shall review its credit transfer policy in the light of periodic changes brought by UGC, SWAYAM, NPTEL and state government.

Note: Students shall also be permitted to register for MOOCs offered through online platforms other than SWAYAM / NPTEL. In such cases, credit transfer shall be

permitted only after seeking approval of the University at least three months prior to the commencement of the semester.

13. Mandatory Internships

Summer Internships:

Two summer internships either onsite or virtual each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Hydel and thermal power projects, software MNCs or any industries in the areas of concerned specialization of the Undergraduate program. One of the two summer internships shall be society oriented and shall be completed in collaboration with government organizations/NGOs & others. The student shall register for the internship as per course structure after commencement of academic year.

Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee comprising of Head of the Department, supervisor of the internship and a senior faculty member of the department. A certificate from industry shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages, respectively. It shall be evaluated for 50 external marks. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the University.

Full Semester Internship and Project work:

In the final semester, the student should mandatorily register and undergo internship (onsite/virtual) and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship.

The project report shall be evaluated with an external examiner. The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner appointed by the University and is evaluated for 140 marks

The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.

14. Guidelines for offering a Minor

The main objective of Minor in a discipline is to provide additional learning opportunities for academically motivated students and it is an optional feature of the B. Tech. programme. Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department and as defined by the respective department offering Minor program.

- i) Minor is introduced in the curriculum of all B. Tech. programs offering a major degree and is applicable to all B. Tech (Regular and Lateral Entry) students admitted in Engineering & Technology.
- ii) Minor programs shall be offered in emerging technologies by the respective departments or in collaboration with the relevant industries/agencies.
- iii) A student shall earn additional 20 credits in the specified area to be eligible for the award of B.Tech. degree with Minor. This is in addition to the credits essential for obtaining the Undergraduate Degree in Major Discipline (i.e., 160 credits).
- iv) A student is permitted to register for a Minor offered by a department other than the parent department and as defined by the respective department offering Minor program.
- v) A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline
- vi) A student is permitted to register for Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.
- vii) The courses offered under Minor can have theory as well as laboratory component. If a course comes with a lab component, that component is to be cleared separately
- viii) The Concerned Principal of the college shall arrange separate class work and timetable of the courses offered under various Minor programs.
- ix) Courses that are used to fulfil the student's primary major may not be double counted towards the Minor. Courses with content substantially equivalent to courses in the student's primary major may not be counted towards the Minor.
- x) Students can complete the courses offered under Minor either in the college or in online platforms like SWAYAM with a minimum duration of 12 weeks for a 3-credit course and 8 weeks duration for a 2-credit course satisfying the criteria defined for credit mobility. If the courses under Minor are offered in conventional mode, then the teaching and evaluation procedure shall be similar to regular B. Tech courses

- xi) The attendance for the registered courses under Minor and regular courses offered for Major degree in a semester are to be considered separately.
- xii) A student shall maintain an attendance of 75% in all registered courses of Minor to be eligible for attending semester end examinations.
- xiii) A student detained due to lack of attendance and having backlogs in regular B. Tech program shall not be permitted to continue Minor
- xiv) A student registered for Minor in a discipline shall pass in all subjects that constitute the requirement for the Minor degree programme. No class/division (i.e., second class, first class and distinction, etc.) shall be awarded for Minor degree programme.
- xv) If a student drops or is terminated from the Minor program, the additional credits so far earned cannot be converted into open or core electives; they will remain extra. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- xvi)The Minor in a discipline will be mentioned in the degree certificate as Bachelor of Technology in XXX with Minor in YYY. For example, Bachelor of Technology in Mechanical Engineering with Minor in Machine Learning.

Enrolment into a Minor:

- i) The enrolment of student into a Minor is based on the percentage of marks obtained in the major degree program.
- Percentage of marks shall be taken up to III semester in case of regular entry students and only III semester in case of lateral entry students. Students having 60% of marks without any backlog subjects will be permitted to register for a Minor.
- iii) If a student is detained due to lack of attendance in either Major or Minor program, registration shall be cancelled
- iv) Minimum strength required for offering a Minor offline in a discipline is considered as 20% of the sanctioned intake. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department satisfying the criteria for credit mobility.
- v) Transfer of credits from a particular Minor to regular B. Tech. and vice-versa shall not be permitted
- vi) Minor is to be completed simultaneously with Major degree program.

Registration for Minor:

- i) The institution will announce specialization, eligibility and courses offered by the departments under Minor and seek registrations in IV Semester, after the results of III Semester are announced.
- ii) The eligible and interested students shall apply through the HOD of his/her parent department. The whole process should be completed within one week before the start of every semester. Selected students shall be permitted to

register the courses under Minor.

- iii) The selected students shall submit their willingness to the principal through his/her parent department which shall be forwarded to the concerned departments offering Minor. Both parent department and department offering minor shall maintain the record of student pursuing the Minor.
- iv) The students enrolled in the minor courses will be monitored continuously. An advisor/mentor from parent department shall be assigned to a group of students to monitor the progress.
- v) There is no fee for registration of subjects under Minor program offered in offline at the respective institutions.

15. Guidelines for offering Honours

The objective of introducing B.Tech. (Hons.) is to facilitate the students to choose additionally the specialized courses of their choice and build their competence in a specialized area in the UG level. The programme is a best choice for academically excellent students having good academic record and interest towards higher studies and research.

- i) Honours is introduced in the curriculum of all B. Tech. programs offering a major degree and is applicable to all B. Tech (Regular and Lateral Entry) students admitted in Engineering & Technology.
- ii) A student shall earn additional 20 credits for award of B.Tech.(Honors) degree from same branch/department/discipline registered for major degree. This is in addition to the credits essential for obtaining the Undergraduate degree in Major Discipline (i.e., 160 credits).
- iii) A student is permitted to register for Honours in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to the Honours from V Semester onwards.
- iv) The Concerned Principal of the college shall arrange separate class work and timetable of the courses offered under Honours program.
- v) Courses that are used to fulfil the student's primary major may not be double counted towards the Honours. Courses with content substantially equivalent to courses in the student's primary Major may not be counted towards the Honours.
- vi) Students can complete the courses offered under Honours either in the college or in online platforms like SWAYAM with a minimum duration of 12 weeks for a 3-credit course and 8 weeks duration for a 2-credit course satisfying the criteria for credit mobility. If the courses under Honours are offered in conventional mode, then the teaching and evaluation procedure shall be similar to regular B. Tech courses
- vii) The attendance for the registered courses under Honours and regular courses offered for Major degree in a semester are to be considered separately.
- viii)A student shall maintain an attendance of 75% in all registered courses under

Honours to be eligible for attending semester end examinations.

- ix) A student registered for Honours shall pass in all subjects that constitute the requirement for the Honours degree program. No class/division (i.e., second class, first class and distinction, etc.) shall be awarded for Honours degree programme.
- x) If a student drops or is terminated from the Honours program, the additional credits so far earned cannot be converted into open or core electives; they will remain extra. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- xi) The Honours will be mentioned in the degree certificate as Bachelor of Technology (Honours) in XXX. For example, B.Tech. (Honours) in Mechanical Engineering

Enrolment into Honours:

- i) Students of a Department/Discipline are eligible to opt for Honours program offered by the same Department/Discipline
- ii) The enrolment of student into Honours is based on the percentage of marks obtained in the major degree program. Percentage of marks shall be taken up to III semester in case of regular entry students and only III semester in case of lateral entry students. Students having 70% without any backlog subjects will be permitted to register for Honours.
- iii) If a student is detained due to lack of attendance either in Major or in Honours, registration shall be cancelled
- iv) Minimum strength required for offering Honours offline is considered as 20% of the sanctioned intake. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department satisfying criteria for credit mobility.
- v) Transfer of credits from Honours to regular B. Tech degree and vice-versa shall not be permitted
- vi) Honours is to be completed simultaneously with a Major degree program.

Registration for Honours:

- i) The institution will announce courses offered by the departments under Honours before the start of the semester.
- ii) The eligible and interested students shall apply through the HOD of his/her parent department. The whole process should be completed within one week before the start of every semester. Selected students shall be permitted to register the courses under Honours.
- iii) The selected students shall submit their willingness to the Principal through his/her parent department offering Honours. The parent department shall maintain the record of student pursuing the Honours.
- iv) The students enrolled in the Honours courses will be monitored continuously.

An advisor/mentor from parent department shall be assigned to a group of students to monitor the progress.

v) There is no fee for registration of subjects for Honours program offered in offline at the respective institutions.

15. Attendance Requirements:

- A student shall be eligible to appear for the University external examinations if he/she acquires a minimum of 40% attendance in each subject and 75% of attendance in aggregate of all the subjects. b) Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- ii) Shortage of Attendance below 65% in aggregate shall in NO CASE be condoned.
- iii) A stipulated fee shall be payable towards condonation of shortage of attendance to the University.
- iv) Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examination of that class and their registration shall stand cancelled.
- v) A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester. They may seek readmission for that semester from the date of commencement of class work.
- vi) If any candidate fulfils the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- vii) If the learning is carried out in blended mode (both offline & online), then the total attendance of the student shall be calculated considering the offline and online attendance of the student.

viii)For induction programme attendance shall be maintained as per AICTE norms.

16. Promotion Rules:

The following academic requirements must be satisfied in addition to the attendance requirements mentioned in section 14.

- i) A student shall be promoted from first year to second year if he/she fulfils the minimum attendance requirement as per university norms.
- ii) A student will be promoted from II to III year if he/she fulfils the academic requirement of securing 40% of the credits (any *decimal* fraction should be *rounded off* to *lower* digit) up to in the subjects that have been studied up to III semester from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and two supplementary examinations of I Semester

One regular and one supplementary examination of II Semester

One regular examination of III semester

iii) A student shall be promoted from III year to IV year if he/she fulfils the academic requirements of securing 40% of the credits (any *decimal* fraction should be *rounded* off to lower digit) in the subjects that have been studied up to V semester from the

following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and four supplementary examinations of I Semester.

One regular and three supplementary examinations of II Semester.

One regular and two supplementary examinations of III Semester.

One regular and one supplementary examination of IV Semester.

One regular examination of V Semester.

And in case a student is detained for want of credits for a particular academic year by ii) & iii) above, the student may make up the credits through supplementary examinations and only after securing the required credits he/she shall be permitted to join in the V semester or VII semester respectively as the case may be.

iv) When a student is detained due to lack of credits/shortage of attendance he/she may be re-admitted when the semester is offered after fulfilment of academic regulations. In such case, he/she shall be in the academic regulations into which he/she is readmitted.

17. Grading:

As a measure of the student's performance, a 10-point Absolute Grading System using the following Letter Grades and corresponding percentage of marks shall be followed:

After each course is evaluated for 100 marks, the marks obtained in each course will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Structure of Strucing of Headenine Ferrorinance				
Range in which the marks	Grade	Grade points		
in the subject fall		Assigned		
≥ 90	S (Superior)	10		
$\geq 80 < 90$	A (Excellent)	9		
$\geq 70 < 80$	B (Very Good)	8		
$\geq 60 < 70$	C (Good)	7		
$\geq 50 < 60$	D (Average)	6		
$\geq 40 < 50$	E (Pass Average)	5		
< 40	F (Fail)	0		
Absent	Ab (Absent)	0		

Structure of	f	Grading of	Academic	Performance
--------------	---	------------	----------	-------------

i) A student obtaining Grade 'F' or Grade 'Ab' in a subject shall be considered failed and will be required to reappear for that subject when it is offered the next supplementary examination.

ii) For noncredit audit courses, "Satisfactory" or "Unsatisfactory" shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA/Percentage.

Computation of Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.,

 $SGPA = \Sigma (C_i \times G_i) / \Sigma C_i$

where, C_i is the number of credits of the i^{th} subject and G_i is the grade point scored by the student in the i^{th} course.

i) The Cumulative Grade Point Average (CGPA) will be computed in the same manner considering all the courses undergone by a student over all the semesters of a program, i.e.,

 $CGPA = \Sigma (C_i \times S_i) / \Sigma C_i$

where " S_i " is the SGPA of the ith semester and C_i is the total number of credits up to that semester.

- ii) Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- iii) While computing the SGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D and F.

18. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he/she shall be placed in one of the following four classes:

Class Awarded	Percentage of Marks to be secured
First Class with Distinction	≥70%
First Class	$< 70\% \ge 60\%$
Second Class	$< 60\% \ge 50\%$
Pass Class	$< 50\% \ge 40\%$

19. With-holding of Results

If the candidate has any dues not paid to the university or if any case of indiscipline or malpractice is pending against him/her, the result of the candidate shall be withheld, and the candidate will not be allowed/promoted into the next higher semester. The issue of awarding degree is liable to be withheld in such cases.

20. Transitory Regulations

Discontinued, detained, or failed candidates are eligible for readmission as and when the semester is offered after fulfilment of academic regulations. Candidates who have been detained for want of attendance or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for admission into the unfinished semester from the date of commencement of class work with the same or equivalent subjects as and when subjects are offered, subject to Section 2 and they will follow the academic regulations into which they are readmitted.

Candidates who are permitted to avail Gap Year shall be eligible for re-joining into the succeeding year of their B. Tech from the date of commencement of class work, subject to Section 2 and they will follow the academic regulations into which they are readmitted.

21. Minimum Instruction Days for a Semester:

The minimum instruction days including exams for each semester shall be 90 days.

22. Medium of Instruction:

The medium of instruction of the entire B. Tech undergraduate programme in Engineering & Technology (including examinations and project reports) will be in English only.

23. Student Transfers:

Student transfers shall be as per the guidelines issued by the Government of Andhra Pradesh and the University from time to time.

24. General Instructions:

- a. The academic regulations should be read as a whole for purpose of any interpretation.
- b. Malpractices <u>rules-nature</u> and punishments are appended.
- c. Where the words "he", "him", "his", occur in the regulations, they also include "she", "her", "hers", respectively.
- d. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- e. The University may change or amend the academic regulations or syllabi at any time and the changes or amendments shall be made applicable to all the students on rolls with effect from the dates notified by the University.

ACADEMIC REGULATIONS (R20) FOR B.TECH. (LATERAL ENTRY SCHEME)

(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year 2021-2022 onwards)

1. Award of B.Tech. Degree

A student admitted in Lateral Entry Scheme (LES) will be declared eligible for the award of the B.Tech degree if the student fulfils the following academic regulations:

- a) Pursues a course of study for not less than three academic years and not more than six academic years.
- b) Registers for <u>121</u> credits and secures all <u>121</u> credits from II to IV year of Regular B. Tech. program.
- 2. Students, who fail to fulfil the requirement for the award of the degree within <u>six</u> consecutive academic years from the year of admission, shall forfeit their seat.

3. Minimum Academic Requirements:

The following academic requirements have to be satisfied in addition to the requirements mentioned in item no.4

- i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the mid semester evaluation and end examination taken together.
- ii. A student shall be promoted from third year to fourth year only if the student fulfils the academic requirements of securing 40% of credits (any *decimal* fraction should be *rounded off* to *lower* digit) from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.
 - a. One regular and two supplementary examinations of III semester.
 - b. One regular and one supplementary examination of IV semester.
 - c. One regular examination of V semester.

And in case if student is already detained for want of credits for particular academic year, the student may make up the credits through supplementary exams of the above exams before the commencement of IV year I semester class work of next year.

4. Course Pattern

- 4.1. The entire course of study is three academic years on semester pattern.
- 4.2. A student eligible to appear for the end examination in a subject but absent at it or has failed in the end examination may appear for that subject at the next supplementary examination offered.

- 4.3. When a student is detained due to lack of credits/shortage of attendance the student may be re-admitted when the semester is offered after fulfilment of academic regulations, the student shall be in the academic regulations into which he/she is readmitted.
- 5. All other regulations as applicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).
- 6. There shall be a bridge course in Mathematics with zero credits in III semester for all disciplines. The course work is conducted for 20 Hrs in the semester and there shall be no examination conducted for the course.
- 5. Lateral Entry Students shall compulsorily pursue mandatory non-credit courses Environmental Science and Universal Human Values either in III semester or IV semester.

RULES FOR

DISCIPLINARY ACTION FOR MALPRACTICES / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1.(a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred for four consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for four consecutive semesters from class work and all University examinations, if his involvement is established. Otherwise, the candidate is debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject only.
6.	Refuses to obey the orders of the Chief Superintendent /Assistant - Superintendent /any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. If the candidate physically assaults the invigilator/ officer-in-charge of the Examinations, then the candidate is also debarred and forfeits his/her seat. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining

		examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person (s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject only or in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester / year examinations, depending on the recommendation of the committee.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
- 3. A show cause notice shall be issued to the college.
- 4. Impose a suitable fine on the college.
- 5. Shifting the examination centre from the college to another college for a specific period of not less than one year.

Note:-

Whenever the performance of a student is cancelled in any subject/subjects due to Malpractice, he has to register for End Examinations in that subject/subjects consequently and has to fulfil all the norms required for the award of Degree.

Guidelines for conducting I Year B.Tech. Coursework as per R20 Regulations (Applicable for Non Autonomous Constituent & Affiliated Colleges)

1. Programs offered by the University:

The following programs are offered at present as specializations for the B. Tech. Course for non-autonomous, constituent& affiliated colleges

S.No.	Name of the Program	Program Code
1.	Civil Engineering	01
2.	Electrical and Electronics Engineering	02
3.	Mechanical Engineering	03
4.	Electronics and Communication Engineering	04
5.	Computer Science and Engineering	05
6.	Electronics and Instrumentation Engineering	10
7.	Information Technology	12
8.	Food Technology	27
9	Artificial Intelligence & Data Science	30
10	Computer Science and Engineering (Artificial Intelligence)	31
11	Computer Science and Engineering (Data Science)	32
	Computer Science and Engineering (Artificial Intelligence	
12	& Machine Learning))	33
13	Computer Science and Engineering (Data Science)	35

and any other course as approved by the authorities of the University from time to time.

2. Programme Pattern:

- a) Total duration of the of B. Tech (Regular) Programme is four academic years
- b) Each Academic year of study is divided into Two Semesters.
- c) The total credits for the Programme is 160.
- d) The minimum instruction days including exams for each semester shall be 90 days.
- e) The medium of instruction for the entire under graduate programme will be in English only
- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Preferably 50% course work for the Theory courses in every semester shall be conducted in the blended mode of learning. If the blended learning is carried out in online mode, then the total attendance of the student shall be calculated considering the offline and online attendance of the student.

3. About Program related terms:

- *a*) **Credit:**A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture/Tutorial) or two hours of practical work/field work per week.
- *b*) Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year.

	Seme	Semester	
	Periods / Week	Credits	
	02	02	
	03	03	
Theory (Lecture/Tutorial)	04	04	
	02	01	
Practical	03	1.5	
	04	02	

Each course is assigned certain number of credits based on following criterion:

4. Course Evaluation:

4.1 Course Pattern:

- a) The entire course of study is for four academic years. Semester pattern shall be followed in all the academic years
- b) A student eligible to appear for the end examination in a subject, but absent or has failed in the end examination may appear for that subject at the next supplementary examination when offered.
- c) When a student is detained due to lack of credits/shortage of attendance he/she may be re-admitted when the semester is offered after fulfilment of academic regulations. In such case, he/she shall be in the academic regulations into which he/she is readmitted.

4.2 Evaluation Process:

The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. Internship shall be evaluated for 50 marks each &Project shall be evaluated for 200 marks whereas mandatory courses with no credits shall be evaluated for 30mid semester marks.

- a) For theory subjects the distribution shall be 30 marks for mid semester Evaluation and 70 marks for the End-Examination.
- b) For practical subjects the distribution shall be 30 marks for mid semester Evaluation and 70 marks for the End- Examination.
- c) If any subject is having both theory and practical components, they will be evaluated separately as theory subject and practical subject. However, they will be given same subject code with an extension of 'T' for theory subject and 'P' for practical subject.

4.3 Mid Semester Examination Evaluation:

For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination shall be evaluated for 30 marks of which 10 marks for objective paper (20 minutes duration), 15 marks for subjective paper (90 minutes duration) and 5 marks for assignment.

Objective paper shall be set for maximum of 20 bits for 10 marks.Subjective paper shall contain 3 either or type questions (totally six questions from 1 to 6) of which student has to answer one from each either or type question. Each question carries 5 marks.

Note:

- a) The subjective paper shall contain 6 questions of equal weightage of 5 marks. Any fraction shall berounded off to the next higher mark.
- b) The objective paper with 20 objective type questions shall be prepared in line with the quality of UPSC/ GATE examination questions
- c) The midterm examination shall be conducted first by distribution of the Objective paper, simultaneously marking the attendance, after 20 minutes the answered objective paper shall be collected back. The student is not allowed to leave the examination hall. Then the descriptive question paper and the answer booklet shall be distributed. After 90minutes the answered booklets are collected back.
- d) The assignment shall contain numerical problems/software development. If subject is purely descriptive and does not have any numerical problems then essay type question/term paper shall be given. It should be continuous assessment throughout the semester. There shall be at least four assignments (2 assignments per each mid examination) in a semester and the average marks shall be considered.

If the student is absent for the mid semester examination, no re-exam shall be conducted and mid semester marks for that examination shall be considered as zero.

First midterm examination shall be conducted for I, II units of syllabus with one either or type question from each unit and third either or type question from both the units. The second midterm examination shall be conducted for III, IV and V units with one either or type question from each unit.

Final mid semester marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightagegiven to the better mid exam and 20% to the other.

For Example:

Marks obtained in first mid: 25 Marks obtained in second mid: 20

Final mid semester Marks: (25x0.8) + (20x0.2) = 24

If the student is absent for any one midterm examination, the final mid semester marks shall be arrived at by considering 80% weightage to the marks secured by the student in the appeared examination and zero to the other. For Example:

Marks obtained in first mid :Absent Marks obtained in second mid: 25 Final mid semester Marks: (25x0.8)+ (0x0.2) =20

4.4 End Examination Evaluation:

- i. End examination of theory subjects shall have the following pattern:
 - a) There shall be 6 questions and all questions are compulsory.
 - b) Question I shall contain 10 compulsory short answer questions for a total of 20 marks such that each question carries 2 marks. There shall be 2 short answer questions from each unit.
 - c) In each of the questions from 2 to 6, there shall be either/or type questions of 10marks each. Student shall answer any one of them.
 - d) The questions from 2 to 6 shall be set by covering one unit of the syllabus for each question.

ii. End examination of theory subjects consisting of two parts of different subjects, for Example:

Basic Electrical & Electronics Engineering shall have the following pattern:

- a) Question paper shall be in two parts viz., Part A and Part B with equal weightage of 35 markseach.
- b) In each part, question 1 shall contain 5 compulsory short answer questions for a total of 5 marks such that each question carries 1mark.
- c) In each part, questions from 2 to 4, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- d) The questions from 2 to 4 shall be set by covering one unit of the syllabus for each question
- **4.5** For practical courses, there shall be a continuous evaluation during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the laboratory shall be evaluated for 30 marks by the concerned laboratory teacher based on the regularity/record/viva/mid semester test. The end examination shall be conducted by the concerned laboratory teacher and a senior expert in the subject from the same department.

In a practical subject consisting of two parts (Eg: Basic Electrical &Electronics Engg. Lab), the end examination shall be conducted for 35 marks in each part. Mid semester examination shall be evaluated as above for 30 marks in each part and final mid semester marks shall be arrived by considering the average of marks obtained in two parts.

4.6 There shall be mandatory courses with zero credits. There shall be no external examination. However, attendance in the audit course shall be considered while calculating aggregate attendance and student shall be declared to have passed the mandatory course only when he/she secures 40% or more in the mid semester examinations. In case, the student fails, a re-examination shall be conducted for failed candidates every six months/semester at a mutually convenient date of college/student

4.7 For the subject having design and/or drawing, such as Engineering Drawing, the distribution of marks shall be 30 for mid semester evaluation and 70 for end examination.

Day-to-day work shall be evaluated for 15 marks by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm examinations in a semester for duration of 2hours each for 15 marks with weight age of 80% to better mid marks and 20% for the other. The subjective paper shall contain 3 either or type questions of equal weight age of 5 marks. There shall be no objective paper in mid semester examination. The sum of day-to-day evaluation and the mid semester marks will be the final sessional marks for the subject.

The end examination pattern for Engineering Drawing, shall consists of 5 questions, either/or type, of 14 marks each. There shall be no objective type questions in the end examination. However, the end examination pattern for other subjects related to design/drawing is mentioned along with the syllabus.

4.8 The laboratory records and mid semester test papers shall be preserved for a minimum of 3 years in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for.

5. Attendance Requirements:

- a) A student shall be eligible to appear for University external examinations if he/she acquires a minimum of 40% attendance in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- c) Shortage of Attendance below 65% in aggregate shall in NO CASE be condoned.
- d) A stipulated fee shall be payable towards condonation of shortage of attendance to the Institution.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examination of that class and their registration shall stand cancelled.
- f) A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester. They may seek readmission for that semester when offered next.

Academic requirements to be satisfied in addition to the attendance requirements mentioned above:

• A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the mid

semester and end examination marks taken together. In case of mandatory courses he/she should secure 40% of the total marks.

6. With-holding of Results:

If the candidate has any dues not paid to the university or if any case of indiscipline or malpractice is pending against him/her or candidate or student, the result of the candidate shall be withheld and the candidate will not be allowed/promoted into the next higher semester. The issue of awarding degree is liable to be withheld in such cases.

7. Award of Grades:

After each subject is evaluated for 100 marks, the marks obtained in each subject will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Range in which the marks	Grade	Grade points
in the subject fall		Assigned
≥90	S (Superior)	10
80-89	A (Excellent)	9
70-79	B (Very Good)	8
60-69	C (Good)	7
50-59	D (Average)	6
40-49	E (Below Average)	5
< 40	F (Fail)	0
Absent	Ab (Absent)	0

Structure of Grading of Academic Performance

- i. A student obtaining Grade 'F' or Grade 'Ab' in a subject shall be considered failed and will be required to reappear for that subject when it is offered the next supplementary examination.
- ii. For mandatory courses, "Satisfactory" or "Unsatisfactory" shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA.

Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

a) The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.,

 $SGPA = \Sigma (C_i \times G_i) / \Sigma C_i$

where, C_i is the number of credits of the i^{th} subject and G_i is the grade point scored by the student in the i^{th} course.

b) The Cumulative Grade Point Average (CGPA) will be computed in the same manner taking into account all the courses undergone by a student over all the semesters of a program, i.e.,

 $CGPA = \Sigma (C_i \times S_i) / \Sigma C_i$

where "S_i" is the SGPA of the i^{th} semester and C_i is the total number of credits upto that semester.

- c) Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- d) While computing the SGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D, E and F.

8. Student Transfers:

Student transfers shall be as per the guidelines issued by the Government of Andhra Pradesh and the University from time to time.

9. General Instructions:

- a) The academic regulations should be read as a whole for purpose of any interpretation.
- b) Malpractices <u>rules-nature</u> and punishments are appended.
- c) Where the words "he", "him", "his", occur in the regulations, they also include "she", "her", "hers", respectively.
- d) In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- e) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments shall be made applicable to all the students on rolls with effect from the dates notified by the University.

RULES FOR

DISCIPLINARY ACTION FOR MALPRACTICES / IMPROPER CONDUCT IN EXAMINATIONS

	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1.(a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred for four consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for four consecutive semesters from class work and all University examinations, if his involvement is established. Otherwise, the candidate is debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. Cancellation of the performance in that subject only.
5.	the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancentation of the performance in that subject only.
6.	Refuses to obey the orders of the Chief Superintendent /Assistant - Superintendent /any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. If the candidate physically assaults the invigilator/ officer-in-charge of the Examinations, then the candidate is also debarred and forfeits his/her seat. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The

		candidate is also debarred and forfeits the seat. Person
		(s) who do not belong to the College will be handed
		over to police and, a police case will be registered
		against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation
		of the performance in that subject and all other subjects
		the candidate has already appeared including practical
		examinations and project work and shall not be
		permitted for the remaining examinations of the
		subjects of that semester/year.
11.	Copying detected on the basis of internal evidence,	Cancellation of the performance in that subject only or
	such as, during valuation or during special scrutiny.	in that subject and all other subjects the candidate has
		appeared including practical examinations and project
		work of that semester / year examinations, depending
		on the recommendation of the committee.
12.	If any malpractice is detected which is not covered in	
	the above clauses 1 to 11 shall be reported to the	
	University for further action to award suitable	
	punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
- 3. A show cause notice shall be issued to the college.
- 4. Impose a suitable fine on the college.
- 5. Shifting the examination centre from the college to another college for a specific period of not less than one year.

Note:-

Whenever the performance of a student is cancelled in any subject/subjects due to Malpractice, he has to register for End Examinations in that subject/subjects consequently and has to fulfil all the norms required for the award of Degree.

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

(Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu–515 002 (A.P) India

First Year B.Tech

Course Structures and Syllabi under R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Semester-0

Induction Program: 3 weeks

S.No	Course No	Course Name	Category	L-T-P-C
1		Physical Activities Sports, Yoga and Meditation, Plantation	МС	0-0-6-0
2		Career Counselling	MC	2-0-2-0
3		Orientation to all branches career options, tools, etc.	МС	3-0-0-0
4		Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5		Proficiency Modules & Productivity Tools	ES	2-1-2-0
6		Assessment on basic aptitude and mathematical skills	МС	2-0-3-0
7		Remedial Training in Foundation Courses	MC	2-1-2-0
8		Human Values & Professional Ethics	MC	3-0-0-0
9		Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10		Concepts of Programming	ES	2-0-2-0

(Common for All Branches of Engineering)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

_____ _____

Civil Engineering

Semester - 1 (Theory - 5, Lab - 4)							
S.No	Course No	Course Name	Category	L-T-P/D	Credits		
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3		
2.	20A56101T	Engineering Physics	BS	3-0-0	3		
3.	20A52101T	Communicative English	HS	3-0-0	3		
4.	20A02101T	Basic Electrical & Electronics Engineering	ES	3-0-0	3		
5.	20A03101T	Engineering Drawing	ES	1-0-0/2	2		
6.	20A03101P	Engineering Graphics Lab	ES	0-0-2	1		
7.		Engineering Physics Lab	BS	0-0-3	1.5		
8.	20A52101P	Communicative English Lab	HS	0-0-3	1.5		
9.	20A02101P	Basic Electrical & Electronics Engineering Lab	ES	0-0-2	1.5		
Total		19.5					

Semester – 2 (Theory – 5, Lab – 5)								
S.No	Course No	Course Name	Category	L-T-P	Credits			
1.	20A54201	Differential Equations and Vector Calculus	BS	3-0-0	3			
2.	20A51201T	Engineering Chemistry	BS	3-0-0	3			
3.		C-Programming & Data Structures	ES	3-0-0	3			
4.	20A01201T	Strength of Materials	ES	3-0-0	3			
5.	20A03202	Engineering Workshop	ES	0-0-3	1.5			
6.	20A05202	IT Workshop	ES	0-0-3	1.5			
7.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5			
8.	20A51201P	Engineering Chemistry Lab	BS	0-0-3	1.5			
9.	20A01201P	Strength of Materials Lab	ES	0-0-3	1.5			
10	20A99201	Environmental Science	MC	3-0-0	0.0			
		•		Total	19.5			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (CE)– I Sem

L T P C 3 0 0 3

(20A54101) Linear Algebra & Calculus (Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and nonhomogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education

9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.

10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– I Sem L T P C 3 0 0 3

(20A56101T) Engineering Physics

(Common to Civil, Mechanical and Food Technology)

COURSE OBJECTIVES

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications.
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications
- To open new avenues of knowledge in dielectric and magnetic materials which find potential in the emerging micro device applications. Considering the significance of micro miniaturization of electronic devices and significance of low dimensional materials, the basic concepts of nano materials, their properties and applications in modern emerging technologies are elicited.
- To familiarize the concepts of theoretical acoustics to practical use in engineering field. To explain the significance of ultrasound and its application in NDT for diversified engineering application.
- To enlighten the periodic arrangement of atoms in crystals, Bragg's law and to provide fundamentals related to structural analysis through powder diffraction method.

UNIT-I

Wave Optics

Interference- Principle of superposition – Interference of light – Conditions for sustained interference – Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings-Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Polarization- Introduction – Types of polarization – Polarization by reflection, refraction and double refraction – Nicol's Prism – Half wave and Quarter wave plates with applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

UNIT-II

Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Propagation Losses (Qualitative) – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the basic concepts of LASER light Sources (L2)
- Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- Explain the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

UNIT III

Engineering Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarization (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Nanomaterials- Introduction – Surface area and quantum confinement – Physical properties: electrical and magnetic properties – Synthesis of nanomaterials: Top-down: Ball Milling – Bottom-up: Chemical Vapour Deposition – Applications of nanomaterials.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- Explain the applications of dielectric and magnetic materials (L2)
- Apply the concept of magnetism to magnetic devices (L3)
- Identify the nano size dependent properties of nanomaterials (L2)
- Illustrate the methods for the synthesis and characterization of nanomaterials (L2)
- Apply the basic properties of nanomaterials in various Engineering branches (L3).

UNIT-IV

Acoustics and Ultrasonics

Acoustics- Introduction – Requirements of acoustically good hall – Reverberation – Reverberation time – Sabine's formula (Derivation using growth and decay method) – Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedies.

Ultrasonics- Introduction – Properties – Production by magnetostriction and piezoelectric methods – Detection – Acoustic grating – Non Destructive Testing – Pulse echo system through transmission and reflection modes – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain how sound is propagated in buildings (L2)
- Analyze acoustic properties of typically used materials in buildings (L4)
- Recognize sound level disruptors and their use in architectural acoustics (L2)
- Identify the use of ultrasonics in different fields (L3)

UNIT-V

Crystallography and X-ray diffraction

Crystallography- Space lattice, Basis, unit cell and lattice parameters – Bravais Lattice – Crystal systems – Packing fraction – Coordination number – Packing fraction of SC, BCC & FCC – Miller indices – Separation between successive (hkl) planes.

X-Ray Diffraction- Bragg's law – Bragg's X-ray diffractometer – Crystal structure determination by Powder method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify various crystal systems (L2)
- Identify different planes in the crystal structure (L3)
- Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- Apply powder method to measure the crystallinity of a solid (L4)

Prescribed Text books:

1. Engineering Physics – Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company

2. Engineering physics – D.K. Battacharya and Poonam Tandon, Oxford University press.

Reference Books:

- 1. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics M.R. Srinivasan, New Age Publications

Course Outcomes

- CO1 **Study** the different realms of physics and their applications in both scientific and technological systems through physical optics. (L2)
- CO2 Identify the wave properties of light and the interaction of energy with the matter (L3).

Asses the electromagnetic wave propagation and its power in different media (L5).

- CO3 Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields. (L3) Elucidates the importance of nano materials along with their engineering applications. (L5)
- CO4 Explain the basic concepts of acoustics and ultrasonics. (L2) Apply the concept of NDT to material testing. (L3)
- CO5 Study the important properties of crystals like the presence of long-range order, periodicity and structure determination using X-ray diffraction technique. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) – I Sem L T P C

3 0 0 3

(20A52101T) COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

UNIT -1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing :**Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Parts of Speech, Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

UNIT -2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices;

mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

UNIT -3

Lesson: The Death Trap: Saki

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing, Paragraph Writing **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

UNIT-4

Lesson: Innovation: Muhammad Yunus

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing **Grammar and Vocabulary:** Quantifying expressions - adjectives and adverbs; comparing and contrasting; Voice - Active & Passive Voice

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations

- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

UNIT -5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. Writing: Writing structured essays on specific topics using suitable claims and evidences. Grammar and Vocabulary: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Text Book:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Course Outcomes

- CO1 Retrieve the knowledge of basic grammatical concepts
- CO2 Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- CO3 Apply grammatical structures to formulate sentences and correct word forms
- CO4 Analyze discourse markers to speak clearly on a specific topic in informal discussions
- CO5 Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- CO6 Create a coherent paragraph interpreting a figure/graph/chart/table

Web links

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– I Sem L T P C 3 0 0 3

(20A02101T) Basic Electrical & Electronics Engineering

(Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Basic Electrical Engineering

Course Objectives:

- To introduce basics of electric circuits.
- To teach DC and AC electrical circuit analysis.
- To explain working principles of transformers and electrical machines.
- To impart knowledge on Power system generation, transmission and distribution

UNIT -1

DC & AC Circuits:

Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, Resonance.

Learning Outcomes

At the end of this unit, the student will be able to

- Recall Kirchoff laws
- Analyze simple electric circuits with DC excitation
- Apply network theorems to simple circuits
- Analyze single phase AC circuits consisting of series RL RC RLC combinations

UNIT -2

DC & AC Machines:

Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Performance Characteristics of DC Motor - Speed control of DC Motor – Principle and operation of Single Phase Transformer - OC and SC tests on transformer - Principle and operation of 3-phase AC machines [Elementary treatment only]

Learning Outcomes

At the end of this unit, the student will be able to

- Explain principle and operation of DC Generator & Motor.
- Perform speed control of DC Motor
- Explain operation of transformer and induction motor.
- Explain construction & working of induction motor DC motor

UNIT -3

Basics of Power Systems:

Layout & operation of Hydro, Thermal, Nuclear Stations - Solar & wind generating stations - Typical AC Power Supply scheme - Elements of Transmission line - Types of Distribution systems: Primary & Secondary distribution systems.

Learning Outcomes

At the end of this unit, the student will be able to

- Understand working operation of various generating stations
- Explain the types of Transmission and Distribution systems

Text Books:

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References:

- 1. L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- 3. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Course Outcomes:

The student should be able to

- Apply concepts of KVL/KCL in solving DC circuits
- Understand and choose correct rating of a transformer for a specific application
- Illustrate working principles of DC Motor
- Identify type of electrical machine based on their operation
- Understand the basics of Power generation, Transmission and Distribution

Part 'B'- Electronics Engineering

Course Objectives

- Understand principles and terminology of electronics.
- Familiar with the theory, construction, and operation of electronic devices.
- Learn about biasing of BJTs and FETs.
- Design and construct amplifiers.
- Understand the concept & principles of logic devices.

Unit-1:

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications ofZener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point,

Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

Learning outcomes:

At the end of this unit, the student will be able to

- Remember and understand the basic characteristics of semiconductor diode. (L1)
- Understand principle of operation of Zener diode and other special semiconductor diodes. (L1)
- Analyze BJT based biasing circuits. (L3)
- Design an amplifier using BJT based on the given specifications. (L4)

Unit-2:

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

Learning outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Analyze Op-Amp based comparator, differentiator and integrator circuits. (L3)

Unit-3:

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder.Latches and Flip-Flops (S-R, JK andD), Shift Registers and Counters.Introduction to Microcontrollers and their applications (Block diagram approach only).

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Analyze standard combinational and sequential circuits. (L4)
- Distinguish between 8085 & 8086 microprocessors also summarize features of a microprocessor. (L5)

Text Books:

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.
- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.
- 4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books:

- 1. SantiramKal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India,2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co,2010.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Course Outcomes:

After the completion of the course students will able to

CO1: Explain the theory, construction, and operation of electronic devices.

CO2: Apply the concept of science and mathematics to explain the working of diodes and its applications, working of transistor and to solve the simple problems based on the applications

CO3:Analyze small signal amplifier circuits to find the amplifier parameters

CO4:Design small signal amplifiers using proper biasing circuits to fix up proper Q point.

CO5:Distinguish features of different active devices including Microprocessors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– I Sem L T P/D C

1 0 0/2 2

(20A03101T) Engineering Drawing

(Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its significance-Conventions in drawing-lettering - BIS conventions.

a)Conic sections including the rectangular hyperbola- general method only,

b) Cycloid, epicycloids and hypocycloid c) Involutes

Learning Outcomes:

At the end of this unit the student will be able to

- understand the significance of engineering drawing
- know the conventions used in the engineering drawing
- identify the curves obtained in different conic sections
- draw different curves such as cycloid, involute and hyperbola

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Learning Outcomes:

At the end of this unit the student will be able to

- understand the meaning of projection
- know how to draw the projections of points, lines
- differentiate between projected length and true length
- find the true length of the lines

Unit: III

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Learning Outcomes:

At the end of this unit the student will be able to

- understand the procedure to draw projection of solids
- differentiate between rotational method and auxillary view method.
- draw the projection of solid inclined to one plain
- draw the projection of solids inclined to both the plains

Unit: IV

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Learning Outcomes:

At the end of this unit the student will be able to

- understand different sectional views of regular solids
- obtain the true shapes of the sections of prism
- draw the sectional views of prism, cylinder, pyramid and cone

Unit: V

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Learning Outcomes:

At the end of this unit the student will be able to

- understand the meaning of development of surfaces
- draw the development of regular solids such as prism, cylinder, pyramid and cone
- obtain the development of sectional parts of regular shapes

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- draw various curves applied in engineering. (L2)
- show projections of solids and sections graphically. (L2)
- draw the development of surfaces of solids. (L3)

Additional Sources

Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) – I Sem L T P C

(20A03101P) Engineering Graphics Lab

(Common to All Branches of Engineering)

Course Objectives:

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V.Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Use computers as a drafting tool. (L2)
- Draw isometric and orthographic drawings using CAD packages. (L3)

Additional Sources

1. Youtube: http-sewor,Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– I Sem L T P C

0 0 3 1.5

(20A56101P) Engineering Physics Lab

(Common to Civil, Mechanical and Food Technology)

Course Objectives:

- Understand the role of Optical fiber parameters in engineering applications.
- Recognize the significance of laser by studying its characteristics and its application in finding the particle size.
- Illustrates the magnetic and dielectric materials applications.
- Identifies the various sensor applications.

List Of Topics

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- 9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. Determination of ultrasonic velocity in liquid (Acoustic grating)
- 13. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum)
- 14. Sonometer: Verification of the three laws of stretched strings
- 15. Determination of spring constant of springs using Coupled Oscillator

References:

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

Course Outcomes:

After completing the course, the student will be able to

- Operate various optical instruments (L2)
- estimate wavelength of laser and particles size using laser(L2)
- evaluate the acceptance angle of an optical fiber and numerical aperture (L3)
- estimate the susceptibility and related magnetic parameters of magnetic materials (L2)
- plot the intensity of the magnetic field of circular coil carrying current with distance (L3)
- determine magnetic susceptibility of the material and its losses by B-H curve (L3)
- apply the concepts of ultrasonics by acoustic grating (L2)

Note Out of 15 experiments any 12 experiments (minimum 10) must be performed in a semester.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) – I Sem L T P C

0 0 3 1.5

(20A52101P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

. Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

List of Topics

- 1. Phonetics
- 2. Reading comprehension
- 3. Describing objects/places/persons
- 4. Role Play or Conversational Practice
- 5. JAM
- 6. Etiquettes of Telephonic Communication
- 7. Information Transfer
- 8. Note Making and Note Taking
- 9. E-mail Writing
- 10. Group Discussions-1
- 11. Resume Writing
- 12. Debates
- 13. Oral Presentations
- 14. Poster Presentation
- 15. Interviews Skills-1

Suggested Software

Orel, Walden Infotech, Young India Films

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course Outcomes

After completing the course, the student will be able to

- Listening and repeating the sounds of English Language
- Understand the different aspects of the English language
- proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable
- Division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to
- Improve fluency in spoken English.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– I Sem L T P C

0 0 2 1.5

(20A02101P) Basic Electrical & Electronics Engineering Lab (Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Electrical Engineering Lab

Course Objectives:

- To Verify Kirchoff's laws and Superposition theorem
- To learn performance characteristics of DC Machines.
- To perform various tests on 1- Phase Transformer.
- To Study the I V Characteristics of Solar PV Cell

List of experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Superposition Theorem.
- 3. Magnetization characteristics of a DC Shunt Generator.
- 4. Speed control of DC Shunt Motor.
- 5. OC & SC test of 1 Phase Transformer.
- 6. Load test on 1-Phase Transformer.
- 7. I V Characteristics of Solar PV cell
- 8. Brake test on DC Shunt Motor.

Course Outcomes:

After completing the course, the student will be able to

- Understand Kirchoff's Laws & Superposition theorem.
- Analyze the various characteristics on DC Machines by conducting various tests.
- Analyze I V Characteristics of PV Cell
- Apply the knowledge to perform various tests on 1-phase transformer

Part B: Electronics Engineering Lab

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- Exposed to linear and digital integrated circuits.

List Of Experiments:

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.

2. Zener diode characteristics and Zener as voltage Regulator.

- 3. Full Wave Rectifier with & without filter.
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course outcomes:

- Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT.
- Construct the given circuit in the lab
- Analyze the application of diode as rectifiers, clippers and clampers and other circuits.
- Design simple electronic circuits and verify its functioning.

Note: Minimum Six Experiments to be performed in each section.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech(CE) – II Sem L T P C 3 0 0 3

(20A54201) Differential Equations and Vector Calculus

(Common to Civil, EEE, Mechanical, ECE and Food Technology)

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

UNIT -1

Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentaryfunction, generalsolution, particular integral,Wronskean, method of variation of parameters.Simultaneous linear equations, Applications to L-C-R Circuit problems and Mass spring system.

Learning Outcomes:

At the end of this unit, the student will be able to

- Identify the essential characteristics of linear differential equations with constant coefficients (L3)
- Solve the linear differential equations with constant coefficients by appropriate method (L3)
- Classify and interpret the solutions of linear differential equations (L3)
- Formulate and solve the higher order differential equation by analyzing physical situations (L3)

UNIT 2:

Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order equations using Lagrange's method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply a range of techniques to find solutions of standard PDEs (L3)
- Outline the basic properties of standard PDEs (L2)

UNIT -3

Applications of Partial Differential Equations

Classification of PDE, method of separation of variables for second order equations. Applications of Partial Differential Equations: One dimensional Wave equation, One dimensional Heat equation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Calcify the PDE (L3)
- Learn the applications of PDEs (L2)

UNIT-4

Vector differentiation

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply del to Scalar and vector point functions (L3)
- Illustrate the physical interpretation of Gradient, Divergence and Curl (L3)

UNIT -5

Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find the work done in moving a particle along the path over a force field (L4)
- Evaluate the rates of fluid flow along and across curves (L4)
- Apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals (L3)

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Books:

- 1. Dennis G. Zill and Warren S. Wright, Advanced Engineering Mathematics, Jones and Bartlett, 2011.
- 2. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 3. George B.Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 4. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 5. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 6. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 7. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 8. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 9. R.L. GargNishu Gupta, Engineering Mathematics Volumes-I & II, Pearson Education
- 10. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.
- 11. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.
- 12. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Solve the differential equations related to various engineering fields (L6)
- Identify solution methods for partial differential equations that model physical processes (L3)
- Interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- Estimate the work done against a field, circulation and flux using vector calculus (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem 2 0 0 3

(20A51201T) Engineering Chemistry (Civil and Mechanical)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To impart the concept of soft and hard waters, softening methods of hard water
- To train the students on the principles and applications of electrochemistry, polymers, surface chemistry, and cement

UNIT -1

Water Technology

Introduction –Soft Water and hardness of water, Estimation of hardness of water by EDTA Method -Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlement, Industrial water treatment – specifications for drinking water, Bureau of Indian Standards(BIS) and World health organization(WHO) standards, ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electrodialysis.

Learning outcomes:

The student will be able to

- List the differences between temporary and permanent hardness of water (L1)
- Explain the principles of reverse osmosis and electrodialysis. (L2)
- Compare quality of drinking water with BIS and WHO standards. (L2)
- Illustrate problems associated with hard water scale and sludge. (L2)
- Explain the working principles of different Industrial water treatment processes (L2)

UNIT -2

Electrochemistry and Applications:

Electrodes - concepts, electrochemical cell, Nernst equation, cell potential calculations.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteriesworking of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bedworth ratios and uses, **Factors affecting the corrosion**, cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Apply Pilling Bedworth rule for corrosion and corrosion prevention (L3)
- Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- Compare different batteries and their applications (L2)

UNIT -3

Polymers and Fuel Chemistry:

Introduction to polymers, functionality of monomers, Mechanism of chain growth, step growth and coordination polymerization.

Thermoplastics and Thermo-setting plastics-: Preparation, properties and applications of poly styrene. PVC and Bakelite

Elastomers – Preparation, properties and applications of Buna S, Buna N, Thiokol

Fuels – Types of fuels, calorific value, numerical problems based on calorific value; Analysis of coal, Liquid Fuels refining of petroleum, fuels for IC engines, knocking and anti-knock agents, Octane and Cetane values, cracking of oils; alternative fuels- propane, methanol and ethanol, bio-fuels.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain different types of polymers and their applications (L2)
- Solve the numerical problems based on Calorific value(L3)
- Select suitable fuels for IC engines (L3)
- Explain calorific values, octane number, refining of petroleum and cracking of oils (L2)

UNIT-4

Advanced Engineering Materials

Composites- Definition, Constituents, Classification- Particle, Fibre and Structural reinforced composites, properties and Engineering applications

Refractories- Classification, Properties, Factors affecting the refractory materials and Applications. Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils – Viscosity, Viscosity Index, Flash point, Fire point, Cloud point, saponification and Applications. Building materials- Portland Cement, constituents, phases and reactivity of clinker, Setting and Hardening of cement.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the constituents of Composites and its classification (L2)
- Identify the factors affecting the refractory material(L3)
- Illustrate the functions and properties of lubricants (L2)
- Demonstrate the phases and reactivity of concrete formation (L2)
- Identify the constituents of Portland cement (L3)
- Enumerate the reactions at setting and hardening of the cement (L3)

UNIT -5

Surface Chemistry and Applications:

Introduction to surface chemistry, colloids, micelle formation, synthesis of colloids (any two methods with examples), chemical and electrochemical methods (not more than two methods) of preparation of nanometals and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, solid-gas interface, solid-liquid interface, adsorption isotherm, BET equation (no derivation) applications of colloids and nanomaterials – catalysis, medicine, sensors.

Learning Outcomes:

At the end of this unit, the students will be able to

- Summarize the concepts of colloids, micelle and nanomaterials (L2)
- Explain the synthesis of colloids with examples (L2)
- Outline the preparation of nanomaterials and metal oxides (L2)
- Identify the application of colloids and nanomaterials in medicine, sensors and catalysis (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 3. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.
- 4. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman, 1992.

Course Outcomes:

At the end of the course, the students will be able to

- Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers & conducting polymers. (L2)
- Explain calorific values, octane number, refining of petroleum and cracking of oils (L2)
- Explain the setting and hardening of cement and concrete phase (L2)
- Summarize the concepts of colloids, micelle and nanomaterials (L2).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) – II Sem L T P C

$\frac{1}{3}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ 3 \\ \end{array}$

(20A05201T) C-Programming & Data Structures (Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT – 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT - 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- Analyse the basic oncepts of C Programming language. (L4)
- Design applications in C, using functions, arrays, pointers and structures. (L6)
- Apply the concepts of Stacks and Queues in solving the problems. (L3)
- Explore various operations on Linked lists. (L5)
- Demonstrate various tree traversals and graph traversal techniques. (L2)
- Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C

3 0 0 3

(20A01201T) STRENGTH OF MATERIALS

Course Objectives:

- To make the student understand how to resolve forces and moments in a given system
- To demonstrate the student to determine the centroid and second moment of area
- To impart procedure for drawing shear force and bending moment diagrams for beams.
- To make the student able to analyze flexural stresses in beams due to different loads.
- To enable the student to apply the concepts of strength of materials in engineering applications and design problems.

UNIT-I

Introduction to Mechanics: Basic Concepts, system of Forces Coplanar Concurrent Forces -Components in Space Resultant -Moment of Forces and its Application - Couples and Resultant of Force Systems. Equilibrium of system of Forces: Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial systems-

Center of Gravity and moment of inertia: Introduction – Centroids of rectangular, circular, I, L and T sections - Centroids of built up sections.

Area moment of Inertia: Introduction – Definition of Moment of Inertia of rectangular, circular, I, L and T sections - Radius of gyration. Moments of Inertia of Composite sections.

Learning outcomes:

At the end of this unit, the students will be able to

- Understand the basic concepts of forces
- Draw Free body Diagrams for forces
- Determine the centroid and moment of inertia for different cross section areas

UNIT – II

Simple Stresses and Strains:

Types of stresses and strains – Hooke's law – Stress – strain diagram for mild steel – working stress – Factor of safety – lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of Varying section – Composite bars – Temperature stresses. Strain energy – Resilience – Gradual, Sudden, impact and shock loadings – simple applications.

Learning outcomes:

At the end of this unit, the students will be able to

- Understand concepts of stresses, strains, elastic moduli and strain energy.
- Evaluate relations between different moduli
- Understand different type's loadings

UNIT – III

Shear Force and Bending Moment:

Definition of beam – types of beams – Concept of Shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and over changing beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads – point of contra flexure – Relation between S.F, B.M and rate of loading at section of a beam.

Learning outcomes:

At the end of this unit, the students will be able to

- Draw the shear force and bending moment diagrams for cantilevers, simply supported beams and Overhanging beams with different loads
- Understand the relationship between shear force and bending moments

$\mathbf{UNIT} - \mathbf{IV}$

Flexural Stresses:

Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/Y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hallow), I, T, Angle and Channel Sections – Design of simple beam sections.

Learning outcomes:

At the end of this unit, the students will be able to

- Derive bending equations
- Compute the flexural stresses for different cross sections.
- Design beam sections for flexure

$\mathbf{UNIT} - \mathbf{V}$

Shear Stresses:

Derivation of formula-Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections. Combined bending and shear. Analysis of trusses by Method of Joints & Sections.

Learning outcomes:

At the end of this unit, the students will be able to

- Determine shear stresses for different shapes.
- Evaluate effect of combined bending and shear on sections

Text Books:

1. S. Timoshenko, D.H. Young and J.V. Rao, "Engineering Mechanics", Tata McGraw-Hill Company.

2. Sadhu Singh, "Strength of Materials", 11th edition 2015, Khanna Publishers.

References:

- 1. S.S.Bhavikatti, "Strength of materials", Vikas publishing house Pvt. Ltd.
- 2. R. Subramanian, "Strength of Materials", Oxford University Press.
- 3. R. K. Bansal, "Strength of Materials", Lakshmi Publications House Pvt. Ltd.
- 4. Advanced Mechanics of Materials Seely F.B and Smith J.O. John wiley & Sons inc., New York.

Course Outcomes:

On completion of the course, the student will be able to:

- Understand the different types of couples and force systems
- Determine the centroid and moment of inertia for different cross-sections
- Understand the concepts of stress, strain, generalized Hooke's law, elastic moduli and strain energy.
- Develop shear force and bending moment diagrams for different load cases.
- Compute the flexural stresses and shear stresses for different loading cases and different cross-sections.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C

0 0 3 1.5

(20A03202) Engineering Workshop

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

a) Half – Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (l2)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) – II Sem L T P C 0 0 3 1.5

(20A05202) IT Workshop

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc. **Productivity tools**

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic

tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors and Prepare spread sheets for calculations .using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C

0 0 3 1.5

(20A05201P) C-Programming & Data Structures Lab

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week l

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.
 - ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:i) call-by-valueii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number

- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C

0 0 3 1.5

(20A51201P) Engineering Chemistry Lab

(Common to Civil and Mechanical)

Course Objectives:

• To Verify the fundamental concepts with experiments

List of Experiments:

- 1. Determination of Hardness of a groundwater sample.
- 2. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 3. Determination of cell constant and conductance of solutions
- 4. Potentiometry determination of redox potentials and emfs
- 5. Determination of Strength of an acid in Pb-Acid battery
- 6. Preparation of a polymer
- 7. Determination of percentage of Iron in Cement sample by colorimetry
- 8. Estimation of Calcium in port land Cement
- 9. Preparation of nanomaterials by precipitation.
- 10. Adsorption of acetic acid by charcoal
- 11. Determination of percentage Moisture content in a coal sample
- 12. Determination of Viscosity of lubricating oil by Redwood Viscometer 1 &2
- 13. Determination of Calorific value of gases by Junker's gas Calorimeter

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer materials (L2)
- Determine the physical properties like surface tension, adsorption and viscosity (L3)
- Estimate the Iron and Calcium in cement (L3)
- Calculate the hardness of water (L4)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C 0 0 3 1.5

(20A01201P) STRENGTH OF MATERIALS LAB

Course objectives:

By performing this laboratory, the student will be able to know the structural behavior of various materials.

List of Experiments

- 1. Tension test.
- 2. Bending test on (Steel/Wood) Cantilever beam.
- 3. Bending test on simply supported beam.
- 4. Torsion test.
- 5. Hardness test.
- 6. Compression test on Open coiled springs
- 7. Tension test on Closely coiled springs
- 8. Compression test on wood/ concrete
- 9. Izod / Charpy Impact test on metals
- 10. Shear test on metals
- 11. Use of electrical resistance strain gauges.
- 12. Continuous beam deflection test.

Course Outcomes:

• By performing the various tests in this laboratory the student will be able to know the structural behavior various structural elements when subjected to external loads

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– II Sem L T P C

3 0 0 0

(20A99201) ENVIRONMENTAL SCIENCE

(Common to All Branches of Engineering)

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

UNIT – I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

Learning outcomes:

At the end of this unit, the students will be able to

- To know the importance of public awareness
- To know about the various resources

$\mathbf{UNIT}-\mathbf{II}$

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about various echo systems and their characteristics
- To know about the biodiversity and its conservation

UNIT – III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the various sources of pollution.
- To know about the various sources of solid waste and preventive measures.
- To know about the different types of disasters and their managerial measures.

$\mathbf{UNIT}-\mathbf{IV}$

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the social issues related to environment and their protection acts.
- To know about the various sources of conservation of natural resources.
- To know about the wild life protection and forest conservation acts.

UNIT - V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the population explosion and family welfare programmes.
- To identify the natural assets and related case studies.

TEXT BOOKS:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

REFERENCES:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

Course Outcomes:

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

CIVIL ENGINEERING

II B.TECH.

		SEMESTER - III					
S.No.	Course Code	Course Name	Category		ours p week		Credits
				L	Т	Р	
1.	20A54301	Probability and Statistics for Civil Engineering	BS	3	0	0	3
2.	20A01301	Advanced Strength of Materials	PC	3	0	0	3
3.	20A01302T	Fluid Mechanics and Hydraulic Machines	PC	3	0	0	3
4.	20A01303T	Surveying	PC	3	0	0	3
5.		Humanities Elective– I	HS	3	0	0	3
	20A52301	Managerial Economics & Financial					
		Analysis					
	20A52302	Organizational Behavior					
	20A52303	Business Environment					
6.	20A01304	Basic Civil Engineering Laboratory	PC	0	0	3	1.5
7.	20A01302P	Fluid Mechanics and Hydraulic	PC	0	0	3	1.5
		Machines Lab					
8.	20A01303P	Surveying Lab	PC	0	0	3	1.5
9.		Skill oriented course - I	SC	1	0	2	2
	20A05305	Application development with					
		Python					
10.		Mandatory noncredit course – II	MC	3	0	0	0
	20A52201	Universal Human Values					
11.	20A99301	NSS/NCC/NSO Activities	-	-	-	2	0
		•			Т	otal	21.5

		SEMESTER - IV					
S.No.	Course Code	Course Name	Category	H	ours j week	•	Credits
				L	Т	P	
1.	20A54401	Mathematical Modeling& Optimization Techniques	BS	3	0	0	3
2.	20A01401T	Engineering Geology	ES	3	0	0	3
3.	20A01402	Structural Analysis – I	PC	3	0	0	3
4.	20A01403T	Concrete Technology	PC	3	0	0	3
5.	20A01404T	Environmental Engineering - I	PC	3	0	0	3
6.	20A01401P	Engineering Geology Lab	ES	0	0	3	1.5
7.	20A01405	Concrete Materials Lab	PC	0	0	3	1.5
8.	20A01404P	Environmental Engineering Lab	PC	0	0	3	1.5
9.	20A52401	Skill oriented course – II Soft Skills	SC	1	0	2	2
10.	20A99401	Mandatory non-credit course - III Design Thinking for Innovation	MC	2	1	0	0
		· · · · · · · · · · · · · · · · · · ·	1		Т	otal	21.5
М	andatory Comm	nunity Service Internship for 6 weeks	duration dur	ring S	Summ	ner Va	cation

CIVIL ENGINEERING

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during third semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

 The theory of Usage of statest and base Course Outcomes of At the end of the constant of the constan	providing the student with the knowledge on of Probability and random variables. atistical techniques like testing of hypothesis ic concepts of Least square methods	Semester		0 0 III hi-squ	3
Course Objectives: This course aims at • The theory of • Usage of statest and basis Course Outcomes (At the end of the co	providing the student with the knowledge on of Probability and random variables. atistical techniques like testing of hypothesis ic concepts of Least square methods	1	icance, c		9 r 9
This course aims at The theory of Usage of statest and basis Course Outcomes (At the end of the co	providing the student with the knowledge on of Probability and random variables. atistical techniques like testing of hypothesis ic concepts of Least square methods		icance, c	hi-squ	oro
This course aims at The theory of Usage of statest and basis Course Outcomes (At the end of the co	providing the student with the knowledge on of Probability and random variables. atistical techniques like testing of hypothesis ic concepts of Least square methods		icance, c	hi-squ	oro
 The theory of Usage of statest and base Course Outcomes (At the end of the construction) 	of Probability and random variables. atistical techniques like testing of hypothesis ic concepts of Least square methods		icance, c	hi-squ	ora
Usage of statest and base Course Outcomes At the end of the co	atistical techniques like testing of hypothesis ic concepts of Least square methods	, testing of signifi	icance, c	hi-squ	oro
test and basi Course Outcomes (At the end of the co	ic concepts of Least square methods	, testing of signifi	icance, c	h1-squ	oro
Course Outcomes (At the end of the co	x x				are
At the end of the co	(CO):				
At the end of the co					
	ourse, student will be able to				
- Onucrotaliu	the concepts of probability, sampling distrib	outions, test of hyp	pothesis	and C	urve
fitting.					
	characteristics through correlation and regre				
	ability theory to find the chances of happening				
	various probability distributions and calcula				
	oblems on testing of hypothesis on large san	nples and small sa	amples a	nd fitt	ing
of the curve			0.11		
UNIT - II	Elementary Statistics	1' 4 '1 4'	9 Hrs		
	stics- definition-advantages-limitations-frequences				
	e for grouped and ungrouped data-variance,				
	n –properties, correlation co-efficient-Regre		Regressi	on co-	
efficient- relation be	etween correlation co-efficient and Regressic	on co-efficient.			
UNIT - I	Probability Theory		8 Hrs		
	ility axioms, addition law and multiplicat	tive law of prob		condi	tional
	heorem, random variables (discrete and conti				
properties, mathema	tical expectation.		-	-	
			<u> </u>		
UNIT - III	Random variables & Distributions		8 Hrs		-
	ion - Binomial, Poisson approximation to the		ution and	a norn	nal
distribution-their pro	operties-Uniform distribution-exponential di	stribution			
UNIT - IV	Testing of Hypothesis		9 Hrs		
	ers, statistics, sampling distribution, point est	timation. Formula		null	
	ve hypothesis, the critical and acceptance reg				
	power of the test. Large Sample Tests: Test f				of
types of errors and p	single mean and difference of means. Confid	dence milervar for	parame		
types of errors and p	•	dence intervar for	parame		
types of errors and p proportions, test for sample and two sam	ple problems				
types of errors and p proportions, test for sample and two sam UNIT - V	Testing of significance & Curve fitting		9 Hrs		
types of errors and p proportions, test for sample and two sam UNIT - V Student t-distributio	ple problems Testing of significance & Curve fitting n (test for single mean, two means and paire	d t-test), testing o	9 Hrs	y of	
types of errors and p proportions, test for sample and two sam UNIT - V Student t-distributio variances (F-test), χ	Testing of significance & Curve fitting n (test for single mean, two means and paire χ^2 - test for goodness of fit, χ^2 - test for inde	d t-test), testing o	9 Hrs	y of	
types of errors and p proportions, test for sample and two sam UNIT - V Student t-distributio variances (F-test), χ	ple problems Testing of significance & Curve fitting n (test for single mean, two means and paire	d t-test), testing o	9 Hrs	y of	
types of errors and p proportions, test for sample and two sam UNIT - V Student t-distributio variances (F-test), χ Fitting: Fitting of Li	Testing of significance & Curve fitting n (test for single mean, two means and paire χ^2 - test for goodness of fit, χ^2 - test for inde	d t-test), testing o	9 Hrs	y of	
types of errors and p proportions, test for sample and two sam UNIT - V Student t-distributio variances (F-test), χ Fitting: Fitting of Li Textbooks:	Testing of significance & Curve fitting n (test for single mean, two means and paire χ^2 - test for goodness of fit, χ^2 - test for inde	ed t-test), testing o ependence of attri equares method	9 Hrs f equalit butes . C	y of urve	tan

CIVIL ENGINEERING

2. Vijay K Rohatgi, Statistical Inference, Aug 2003, Dover Publications Inc.

Reference Books:

- 1. S.P.Gupta, Statistical Methods, 33rd Edition, Sultan Chand & Sons. 2. M.K.Jain, S.R.K.Iyengar and R.K.Jain,
- 2. Numerical Methods for Science and Engineering Computation, 6th Edition, New Age International Publishers.

Online Learning Resources:

http://nptel.ac.in/courses/111105090/ http://nptel.ac.in/courses/111106112

Pre-requisite Engineering Mechanics Semester III Course Objectives: •	Course Code	Advanced Strength of	Materials	L	Т	Р	C
Course Objectives: • To demonstrate analytical methods for determining strength & stiffness and assess stability structural members. • To enable the student analyze indeterminate trusses • To enable the student to undergo analysis procedures for analyzing fixed and Continuc beams. • To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. • To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): • Determine deflection at any point on a beam under simple and combined loads • Apply energy theorems for analysis of indeterminate structures • Analyze indeterminate structures with yielding of supports • Analyze beams and portal frames using slope deflection and moment distribution methods • Analyze beams and portal frames using slope deflection and moment distribution methods • Analyze beams and portal frames using slope deflection and moment distribution for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for elastic line of beam – Double integration and Macaulay's methods. U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shaf Torsional moment of resistance = Polar section modulus – power transmission through shaft C	20A01301			3	0	0	3
To demonstrate analytical methods for determining strength & stiffness and assess stability structural members. To enable the student analyze indeterminate trusses To make the student to undergo analysis procedures for analyzing fixed and Continue beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution for elastic line of beam Dufform bending – slope, deflection and radius of curvature – Differential equation for elastic line of beam Duoble integration and Macaulay's methods. Determination of slope and deflection for cantile application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs.	Pre-requisite	Engineering Mechanics	Semester			III	
To demonstrate analytical methods for determining strength & stiffness and assess stability structural members. To enable the student analyze indeterminate trusses To make the student to undergo analysis procedures for analyzing fixed and Continue beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution for elastic line of the same under point loads. U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop antilever beams under UDL and point loads. UNIT - II Torsion Combined bending and torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion – Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - II Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation							
tructural members. To enable the student analyze indeterminate trusses To make the student to understand the analysis procedures for analyzing fixed and Continue beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution for elastic line ebeam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads. U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion – Springs -Types of springs – deflection of close coiled helical spring for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - com		utical matheds for datarmining	strangth & stiffna	aa and	000000	otobil	lity of
To enable the student to understand the analysis procedures for analyzing fixed and Continue beams. To make the student to understand the analysis procedures for analyzing fixed and Continue beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): To betermine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads. U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop santilever beams under torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion – Springs -Types of springs – deflection of close coiled helical spri ander axial pull and axial couple – Carriage or leaf springs. UNIT - II Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical astres – Limitations of Euler's the		rytical methods for determining	suengui & suime	ss anu	a55055	s staon	ity of
To make the student to understand the analysis procedures for analyzing fixed and Continue beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To enable the student to analyze the two hinged and three hinged arches To analyze bears and portal frames using of indeterminate structures Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods. Analyze beams and portal frames using slope deflection and moment distribution methods. Miff of Beams UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line one mouble integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion – Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriag		nt analyze indeterminate trusses					
beams. To enable the student to undergo analysis procedure using slope deflection method and moment distribution method. To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze bending moment, normal thrust and radial shear in the arches UNIT • I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of seam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile und simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of proprantilever beams under UDL and point loads. UNIT • II Torsion Forsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shaforsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts introduction – classification of comuns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon f			edures for analyzi	ng fixe	ed and	l Conti	nuous
moment distribution method. • To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): • Determine deflection at any point on a beam under simple and combined loads • Apply energy theorems for analysis of indeterminate structures • Analyze indeterminate structures with yielding of supports • Analyze beams and portal frames using slope deflection and moment distribution methods • Analyze bending moment, normal thrust and radial shear in the arches UNIT · I Deflection of Beams Jniform bending – slope, deflection and radius of curvature – Differential equation for elastic line or beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile on diment area method – application to simply supported and overhanging beams- analysis of prop rantilever beams under point loads. UNIT · II Torsion Forsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu accentric loading and Secant formula – Prof. Perry's formula. </td <td>beams.</td> <td></td> <td></td> <td>C</td> <td></td> <td></td> <td></td>	beams.			C			
To enable the student to analyze the two hinged and three hinged arches Course Outcomes (CO): Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection of slope and deflection for cantile und simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop rantilever beams under UDL and point loads. UNIT - II Torsion Torsion — Assumptions and Derivation of Torsion formula for circular sha Torsion in moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri inder axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu accentric loading and Secant formula – Prof. Perry's formula. UNIT - IV			e using slope defle	ection	metho	d and	
Course Outcomes (CO): • Determine deflection at any point on a beam under simple and combined loads • Apply energy theorems for analysis of indeterminate structures • Analyze indeterminate structures with yielding of supports • Analyze beams and portal frames using slope deflection and moment distribution methods • Analyze bending moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Juniform bending – slope, deflection and radius of curvature – Differential equation for elastic line or beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile und simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of proprantilever beams under UDL and point loads. UNIT - II Torsion Cosional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu scentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy							
 Determine deflection at any point on a beam under simple and combined loads Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams and portal frames using slope deflection and moment distribution methods Analyze beams moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile und simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of properatilever beams under UDL and point loads. UNIT - II Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Corsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – II Columns and Struts Introduction – Classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical Stress – Limitations of Euler's theory – Rankine – Gordon formula ccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprin leaf springs. UNIT - V Thin and Thick Cylinders hand cylinders - Sompound	• To enable the studen	it to analyze the two hinged and	three hinged arch	nes			
 Apply energy theorems for analysis of indeterminate structures Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze bending moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of eam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of proprantilever beams under UDL and point loads. UNIT - II Torsion Forsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - II Columns and Struts Introduction – classification of clowas – Limitations of Euler's theory – Rankine – Gordon formula eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprite leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of hin & thick cylindrical shells. 	Course Outcomes (CO):						
 Analyze indeterminate structures with yielding of supports Analyze beams and portal frames using slope deflection and moment distribution methods Analyze bending moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of seam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of proper antilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri inder axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu seccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprive leaf springs. UNIT - V Thin and Thick Cylinders Introduction – Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells. 				ned loa	lds		
Analyze beams and portal frames using slope deflection and moment distribution methods Analyze bending moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of proper antilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Stenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells - Moop stress - Compound cylinders - Shrink fit -							
Analyze bending moment, normal thrust and radial shear in the arches UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of seam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I theory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Stenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprin leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thick cylindrical shells - Moop stress - longitudinal stresses - Lame's theory - Design of thick cylindrical shells - Moop stress - Compound cylinders - Shrink fit -				1 1			. 1.
UNIT - I Deflection of Beams Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of properties and overhanging beams- analysis of properties of the set o					oution	metho	as
Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of properatilever beams under UDL and point loads. UNIT - II Torsion Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts (Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula cortical springs. UNIT - IV Springs VINIT - IV Springs UNIT - IV Introduction on helical springs - stresses and deformations - strain energy - compound spring - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design oching thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	• Anaryze bending m	Sment, normai thrust and radiai	shear in the arches	5			
beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantile und simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop cantilever beams under UDL and point loads. UNIT - II Torsion Forsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formu eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprin leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of hin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	UNIT - I	Deflection of Beams					
and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorem Moment area method – application to simply supported and overhanging beams- analysis of prop- Cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula eccentric loading and secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of hin & thick cylindrical shells.							
Moment area method – application to simply supported and overhanging beams- analysis of propresentilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shat Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I theory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells. Wire wound thin cylinders - Compound cylinders - Shrink fit -							
cantilever beams under UDL and point loads. UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I theory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae ccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -							
UNIT - II Torsion Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular sha Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I theory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula ccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -			d overhanging be	ams- a	inalys	is of p	roppe
Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shaft Torsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spri under axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I theory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula ccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -		2 and point loads.					
Forsional moment of resistance – Polar section modulus – power transmission through shaft Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spring Inder axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae CONIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound spring leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -							
Combined bending and torsion –. Springs -Types of springs – deflection of close coiled helical spring inder axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling I heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae coentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprine leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -							
Inder axial pull and axial couple – Carriage or leaf springs. UNIT – III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling l heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae Scentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound springleaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -							
UNIT - III Columns and Struts Introduction – classification of columns – Axially loaded compression members – Euler's crippling l heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae Scentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprine leaf springs. UNIT - V Thin and Thick Cylinders Untroduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of hin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -			s – deflection of c	lose co	iled h	elical	spring
ntroduction – classification of columns – Axially loaded compression members – Euler's crippling l heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound springleaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of him & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	inder axial pull and axial co	uple – Carriage or leaf springs.					
heory – derivation of Euler's critical load formulae for various end conditions – Equivalent lengt Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formulae CONTT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprine leaf springs. UNIT - V Thin and Thick Cylinders UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of hin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	U NIT – III	Columns and Struts					
Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thick cylindrical shells.							
eccentric loading and Secant formula – Prof. Perry's formula. UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound sprint - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -							
UNIT - IV Springs Axial load and torque on helical springs - stresses and deformations - strain energy - compound spring- leaf springs. - leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -				nkine –	- Gorc	lon for	mula
Axial load and torque on helical springs - stresses and deformations - strain energy - compound springs. - leaf springs. UNIT - V Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells. Wire wound thin cylinders - Compound cylinders - Shrink fit -	eccentric loading and Secan	t formula – Prof. Perry's formul	a.				
- leaf springs. UNIT - V Thin and Thick Cylinders Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	UNIT - IV	Springs					
Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of this with the cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -		lical springs - stresses and defor	mations - strain er	nergy -	comp	ound	spring
Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame's theory - Design of thin & thick cylindrical shells- Wire wound thin cylinders - Compound cylinders - Shrink fit -	UNIT - V	Thin and Thick Cylinders					
	Introduction - Thin Cylindri	cal shells - hoop stress - longitu					gn of

CIVIL ENGINEERING

Textbooks:

- 1. Bansal R. K, "Strength of Materials", Laxmi Publications, 2010.
- 2. B. C. Punmia Strength of Materials by.- Laxmi publications.

Reference Books:

- 1. Schaum's outline series Strength of Materials, Mc Graw hill International Editions.
- 2. L.S. Srinath, Strength of Materials, Macmillan India Ltd., New Delhi
- 3. Gere J.M. and Goodno B.J. "Strength of Materials" Indian Edition (4th reprint), Cengage Learning India Private Ltd., 2009.
- 4. R.S.Khurmi and N.Khurmi, "Strength of Materials (Mechanics of Solids)", S Chand And Company Limited, Ramnagar, New Delhi-110 055
- 5. B. S. Basavarajaiah and P. Mahadevappa, "Strength of Materials" 3rd Edition 2010, in SI UNITs, Universities Press Pvt Ltd, Hyderabad.

Course Code	Fluid Mechanics and Hydraul		L	Т	Р	C
20A01302T	(Common to Civil & Mec		3	0	0	3
Pre-requisite	Physics, Chemistry	Semester		I	[I	
Pre-requisite Course Objective To impart To explain technique To enable To Introde To Introde To impart Course Outcome Familiariz Understar through ct Analyze c	Physics, Chemistry es: ability to solve engineering problems n basics of statics, kinematics and dyn s of hydrostatic forces on objects. the students measure quantities of flu uce concepts of uniform and non-unifor knowledge on design of turbines and s (CO): the basic terms used in fluid mechanics and the principles of fluid statics, kinem and flow characteristics and classify the	Semester Sin fluid mechanics aamics of fluids and tid flowing in pipes orm flows through pumps.	s variou , tanks ; open ch s e variou n channe	s meas and ch annel.	u suring nannels	
Pascal's law, pro Manometer, Sing	Introduction to Fluid Statics en a fluid and a solid - characteristics of essure variation with temperature, gle Column Manometer, U Tube ure and force: horizontal, vertical and Fluid kinematics and Dynamics	density and altitu Differential Mano	de. Pie meter.	zomet pressi	ter, U-' ure gau	Tube uges,
Classification of f velocity potential coordinates. Fluid Dynamics: equation – derivat orifice meter and b	Tuid flow - Stream line, path line, s function. One, two and three - din Surface and body forces; Equations ion; Energy Principle; Practical applic Pitot tube; Momentum principle; Force Forced; Definitions of Reynolds Num	nensional continuit of motion - Eule ations of Bernoulli es exerted by fluid f	y equat er's equ 's equat flow on	tions i ation; ion :V pipe b	in Carte Bernov enturim pend; Vo	esian ulli's neter, ortex
Line and Total En Flow- Laminar flo of viscosity. Reyn	Analysis Of Pipe Flow pipelines; Darcy – Weisbach equation nergy Line; Concept of equivalent ler ow through: circular pipes, annulus ar olds experiment, Transition from lam d rough pipes-Moody's diagram – Int	ngth – Pipes in Par nd parallel plates. S ninar to turbulent fl	allel an toke's l ow. Res	d Seri law, M sistanc	es. Lan leasuren e to flo	ninar ment
of a channel, cl Distribution of Momentum Equa Computation of U	Flow in Open Channels ow-Comparison between open channel assification of open channels, class channel section. Uniform Flow-Co tion, Characteristics of uniform flo niform flow.Specific energy, critical f l depth. Measurement of Discharge an	sification of open ontinuity Equation ow, Chezy's form low, discharge curv	channe , Energ ula, Ma re, Spec	el flov gy Eq anning ific for	w, Velo quation g's form rce, Spe	ocity and nula. ecific

CIVIL ENGINEERING

Varied FlowDynamic Equation of Gradually Varied Flow. Hydraulic Jump and classification - Elements and characteristics- Energy dissipation.

UNIT - V Hydraulic Machines

Impact of Jets- Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes - velocity triangles at inlet and outlet - Work done and efficiency - Hydraulic Turbines: Classification of turbines; pelton wheel and its design. Francis turbine and its design - efficiency - Draft tube: theory - characteristic curves of hydraulic turbines - Cavitation - Working principles of a centrifugal pump, work done by impeller; heads, losses and efficiencies; minimum starting speed; Priming; specific speed; limitation of suction lift, net positive suction head (NPSH); Performance and characteristic curves; Cavitation effects; Multistage centrifugal pumps; troubles and remedies – Introduction to Reciprocating Pump.

Textbooks:

- 1. P. M. Modi and S. M. Seth, "Hydraulics and Fluid Mechanics", Standard Book House
- 2. K. Subrahmanya, "Theory and Applications of Fluid Mechanics", Tata McGraw Hill

Reference Books:

- 1. R. K. Bansal, A text of "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi.
- 2. K. Subramanya, Open channel Flow, Tata McGraw Hill.
- 3. N. Narayana Pillai, Principles of "Fluid Mechanics and Fluid Machines", Universities Press Pvt Ltd, Hyderabad. 3rd Edition 2009.
- 4. C. S. P. Ojha, R. Berndtsson and P. N. Chadramouli, "Fluid Mechanics and Machinery", Oxford University Press, 2010.
- 5. Banga& Sharma, "Hydraulic Machines", Khanna Publishers.

Online Learning Resources:

- 1. https://www.coursera.org/courses?query=fluid%20mechanics
- 2. https://www.udemy.com/topic/fluid-mechanics/
- 3. https://onlinecourses.nptel.ac.in/noc21_ce31/preview
- 4. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unified-engineering-i-ii-iii-iv-fall-2005-spring-2006/fluid-mechanics/</u>
- 5. <u>http://lms.msitonline.org/mod/folder/view.php?id=138</u>

Course Code	SURVEYING		L T P C
20A01303T			3 0 0 3
Pre-requisite	NIL	Semester	III
Course Objectives	:		
	e student to get well conversant with the fu	indamentals of var	tious basic methods
and instrum	nents of surveying.		
To introduce	ce to the students in identifying reduced le	evel of the ground	and its profile for
	as and volumes of embankments and cutting		
	e student to use angular measuring instrume	nts for horizontal	and vertical control.
	he student to set simple horizontal curves.		
	ce the knowledge construction surveys and	usage of modern	instrument such as
total statior	1.		
Course Outcomes			
	ourse, the student will be able to:		
	angles, distances and levels		
	ta collection methods and prepare field note		
	d the working principles of survey instrumer	nts	
	ne volumes of earth work		
• Able to use	e modern survey instruments.		
	Introduction and Desis Concerts of survey		
UNIT - I	Introduction and Basic Concepts of survey		Christians of Mar
	ctives, classification and principles of sur		
	bols and Code of Signals, Surveying stances and Directions Linear distances Ap		
	iging, Tape corrections, indirect methods		
	- Bearings, included angles, Local Attract		
	ring: Introduction, accessories, setting up		
	, advantages and disadvantages	or plane tuble,	coninques, testing,
uujuounonio, erroro,			
UNIT - II	Levelling, Contouring and Computation of	f Areas & Volume	es
	definitions, types of levels and levelling sta	ves, temporary ad	justments, methods
	ng and Determination of levels- HI Meth		
	and Refraction. Contouring- Characterist		
	f contour surveying, interpolation and ske		
	s: Areas - Determination of areas consisting		
	ter. Volumes - Computation of areas for leve		
and without transve	erse slopes, determination of volume of eart	th work in cutting	and embankments,
volume of borrow p	bits, capacity of reservoirs.		
UNIT - III	Theodolite Surveying		
	es, Fundamental Lines, temporary adjustme		
	od and reiteration method, measurement		
	se is accessible and inaccessible. Traversi		traversing, traverse
computations and a	djustments, Gale's traverse table, Omitted n	neasurements.	
UNIT - IV	Tacheometric Surveying		
	eometry, stadia and tangential methods of T		
	elements of simple circular curve, setting ou	ut of simple horizo	intal circular curves
– Basics of Total St	ation and GPS.		

CIVIL ENGINEERING

UNIT - V Construction surveys

Introduction-staking out buildings-pipelines and sewers-highwaysculverts. Bridge surveysdetermining the length of a bridge-locating centres of piers- surface surveys and tunnel alignmentunderground surveys-connection of surface and underground surveys-levelling in tunnels.

Textbooks:

- 1. C.Venkatramaiah, "Text book of surveying", 2nd edition, Universities press, 2018.
- 2. Arora K R "Surveying" Vol 1, 2 & 3, Standard Book House, Delhi, 2004.

Reference Books:

- 1. S K Duggal, "Surveying" (Vol 1 & 2), Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2004.
- 2. R. Subramanian, "Surveying and leveling" Oxford university press, New Delhi.
- 3. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Surveying" (Vol 1, 2 & 3), -Laxmi Publications (P) ltd., New Delhi.
- 4. R. Agor Khanna Publishers 2015 "Surveying and leveling".

5. Arthur R Benton and Philip J Taety, "Elements of Plane Surveying", McGraw Hill – 2000.

Online Learning Resources:

- 1. <u>https://www.udemy.com/course/surveying/</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc20_ce18/preview</u>
- 3. <u>https://freevideolectures.com/course/98/surveying</u>

Course Code	MANAGERIAL ECONOMICS AND FINANCIAL	L	Т	P	С
20A52301	ANALYSIS	3	0	0	3

	(Common to All branches of Engineering)				
Pre-requisite	NIL Semester	. <u> </u>	I	Π	
Course Objective					
	ate the basic knowledge of micro economics and financial account		_		
	the students learn how demand is estimated for different pro-	ducts,	, inp	ut-oi	ıtput
	hip for optimizing production and cost				
	the Various types of market structure and pricing methods and st				
	n overview on investment appraisal methods to promote the stude	ents to	o lear	n ho	w to
	-term investment decisions.			C1	
	le fundamental skills on accounting and to explain the process of	prepa	ring	finai	ncial
statement					
Course Outcome					
	e concepts related to Managerial Economics, financial accounting				
Understar	nd the fundamentals of Economics viz., Demand, Production,	cost,	, reve	enue	and
markets					
	e Concept of Production cost and revenues for effective Business	decis	10N		
	now to invest their capital and maximize returns				
	the capital budgeting techniques	- f 1			
Develop (the accounting statements and evaluate the financial performance	of du	Isine	ss en	itity.
UNIT - I	Managerial Economics				
UNII - I	Wanageriai Economics				
Introduction – Na	ture, meaning, significance, functions, and advantages. Demand-	Conc	ent l	Func	tion
	Demand Elasticity- Types – Measurement. Demand Forecasting				
	nods. Managerial Economics and Financial Accounting and Mana				0
0,	6	0			
UNIT - II	Production and Cost Analysis				
	ture, meaning, significance, functions and advantages. Productio				
	- Short run and Long run Production Function- Isoquants and				
	oduction Function - Laws of Returns - Internal and External Econo				
	Analysis - Cost concepts and Cost behavior- Break-Even				
	Break-Even Point (Simple Problems)-Managerial significance	and	limit	atior	ns of
Break-Even Anal	ysis.				
UNIT - III	Business Organizations and Markets		6		,
	Nature, meaning, significance, functions and advantages. F				
	ble Proprietary - Partnership - Joint Stock Companies - Public				
	- Perfect and Imperfect Competition - Features of Perfect Comp				
Monopolistic Cor	npetition–Oligopoly-Price-Output Determination - Pricing Metho	ous an	ia Su	rateg	jies
UNIT - IV	Capital Budgeting				
	ature, meaning, significance, functions and advantages. Types o	f Wor	rkino	r Car	oital
	urces of Short-term and Long-term Capital, Estimating				
	bital Budgeting– Features, Proposals, Methods and Evaluation. P			-	•
	ing Rate of Return (ARR) Net Present Value (NPV) Internal				
Method (sample p				(1	
UNIT - V	Financial Accounting and Analysis				

CIVIL ENGINEERING

Introduction – Nature, meaning, significance, functions and advantages. Concepts and Conventions-Double-Entry Book Keeping, Journal, Ledger, Trial Balance-Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney&Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference Books:

- 1. Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2013.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt https://www.slideshare.net/rossanz/production-and-cost-45827016 https://www.slideshare.net/darkyla/business-organizations-19917607

https://www.slideshare.net/balarajbl/market-and-classification-of-market

https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396

https://www.slideshare.net/ashu1983/financial-accounting

Course Code	ORGANISATIONAL BEHAV	VIOUR	L	Т	P	С
20A52302	(Common to All branches of Eng	ineering)	3	0	0	3
Pre-requisite	NIL	Semester		I	II	
Course Objectives:						
	ident's comprehension of organizational bel					
	wledge to students on self-motivation, leade	ership and manage	ment			
	them to become powerful leaders					
	owledge about group dynamics					
To make then	n understand the importance of change and	development				
Course Outcomes (C						
	rganizational Behaviour, its nature and scop					
	he nature and concept of Organizational beh					
	es of motivation to analyse the performance	e problems				
	lifferent theories of leadership					
 Evaluate grou 						
	owerful leader					
UNIT - I	Introduction to Organizational Behavio					
	nature, scope and functions - Organizing Pr			zing	effect	ive
-Understanding Indiv	idual Behaviour - Attitude - Perception - L	earning – Persona	lity.			
UNIT - II	Motivation and Leading					
	on- Maslow's Hierarchy of Needs - Hertzb					
theory of expectancy	- Mc Cleland's theory of needs-Mc Grego	or's theory X and	theor	y Y-	- Ada	m's
	e's goal setting theory-Alderfer's ERG the	ory .				
UNIT - III	Organizational Culture					
Introduction - Mean	ing, scope, definition, Nature - Organizat	tional Climate - I	Leade	rship) - Ti	raits
Theory–Managerial C	Grid - Transactional Vs Transformational L	eadership - Qualit	ties o	f goo	d Le	ader
- Conflict Manageme	nt -Evaluating Leader- Women and Corpor	ate leadership.				
UNIT - IV	Group Dynamics					
	ng, scope, definition, Nature- Types of grou					
	oup Development - Group norms - Group c			roups	s - Gr	oup
	am building - Conflict in the organization-		n			
UNIT - V	Organizational Change and Developme					
	, Meaning, scope, definition and functions					
	ge Management – Work Stress Manageme		nal n	nanag	gemei	at –
Managerial implication	ons of organization's change and development	ent				
Textbooks:						
	anisational Behaviour, McGraw-Hill, 12 Tl					
2. P Subba Ran, Orga	inisational Behaviour, Himalya Publishing	House 2017				
Reference Books:						
 McShane, Or 	ganizational Behaviour, TMH 2009					
	nisational Behaviour, Thomson, 2009.					
	Stephen, Timothy A. Judge, Organisational	Behaviour. Pearso	on 200)9.		
	Organisational Behaviour, Himalaya, 2009					
Online Learning Re						
	share.net/Knight1040/organizational-cultur	e-				
	eshare.net/AbhayRajpoot3/motivation-165					
	re.net/harshrastogi1/group-dynamics-15941					
	are.net/vanyasingla1/organizational-chan		2656	<u>5951</u>	_	

20A52303	Business Environ		L 3	<u>Т</u> 0	<u>Р</u> 0	$\frac{C}{3}$
Pre-requisite	(Common to All branches o NIL	Semester	3	<u> </u>	-	3
r re-requisite	NIL	Semester		11	1	
Course Objectives	3:					
v v	ne student to understand about the busin	ess environment				
	them in knowing the importance of fisca					
	e them in understanding the export poli					
	knowledge about the functioning and ro					
To Encours	age the student in knowing the structure	e of stock markets				
Course Outcomes	(CO):					
	siness Environment and its Importance.					
	1 various types of business environment					
	knowledge of Money markets in future					
	dia's Trade Policy					
	scal and monitory policy					
• Develop a	personal synthesis and approach for ide	ntifying business oppor	rtunitie	es		
UNIT - I	Overview of Business Environmen	nt				
Introduction – me	eaning Nature, Scope, significance, f	functions and advanta	ges.]	Fypes	-Inte	rna
	and Macro. Competitive structure of indu					
& limitations of en	vironmental analysis& Characteristics of	of business.				
UNIT - II	Fiscal & Monetary Policy					
	rure, meaning, significance, functions a	and advantages Public	Dovo		Du	hli
	ure, meaning, significance, functions a					
Expenditure - Eval	luation of recent fiscal policy of GOL					
	luation of recent fiscal policy of GOI. y of Money – RBI - Objectives of monet	Highlights of Budget-	- Mon	etary	Polic	су
Demand and Suppl	y of Money -RBI -Objectives of monet	Highlights of Budget-	- Mon	etary	Polic	су
Demand and Suppl of Finance Commis	y of Money –RBI -Objectives of monet ssion.	Highlights of Budget-	- Mon	etary	Polic	су
Demand and Suppl of Finance Commis UNIT - III	y of Money –RBI -Objectives of mone ssion. India's Trade Policy	Highlights of Budget- tary and credit policy -	- Mon Recen	etary it tren	Polic ds- F	cy Role
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions an	Highlights of Budget- tary and credit policy -	- Mon Recen	etary at tren	Polio ds- F	cy Rol 1 o
Demand and Suppl of Finance Commis <u>UNIT - III</u> Introduction – Nati Indian Internationa	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra	Highlights of Budget- tary and credit policy - nd advantages. Magnitude Agreements - EXIN	- Mon Recen ude an	etary it tren	Polia ds- F ection d role	cy Rol
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra ace of Payments– Structure & Major c	Highlights of Budget- tary and credit policy - nd advantages. Magnitude Agreements - EXIN	- Mon Recen ude an	etary it tren	Polia ds- F ection d role	cy Rol
Demand and Suppl of Finance Commis UNIT - III Introduction – Nationa EXIM bank -Balar	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra	Highlights of Budget- tary and credit policy - nd advantages. Magnitude Agreements - EXIN	- Mon Recen ude an	etary it tren	Polia ds- F ection d role	
Demand and Suppl of Finance Commis UNIT - III Introduction – Natu Indian Internationa EXIM bank -Balar Balance of Paymer	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra ince of Payments– Structure & Major c ints - Correction measures. World Trade Organization	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes fo	- Mon Recen ude an A poli- or Disc	etary at tren d direcy an equili	Polia ds- R ection d role briun	cy Rol n o e o n i
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major con- tists - Correction measures. World Trade Organization ure, significance, functions and advanta	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for oges. Organization and S	- Mon Recen ude an A politor Disc	etary at tren d dire cy an equili	Polic ds- R ection d role brium	cy Role n o n in and
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major con- nts - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for ages. Organization and S greements in the Urugu	- Mon Recen ude an A polio or Dise Structu	etary at tren d dire cy an equili	Polic ds- R ection d role brium	cy Rol n o e o n i an
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major con- tists - Correction measures. World Trade Organization ure, significance, functions and advanta	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for ages. Organization and S greements in the Urugu	- Mon Recen ude an A polio or Dise Structu	etary at tren d dire cy an equili	Polic ds- R ection d role brium	cy Role n o e o n in and
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major con- nts - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for ges. Organization and S greements in the Urugu Anti-dumping Measure	- Mon Recen ude an A polio or Dise Structu	etary at tren d dire cy an equili	Polic ds- R ection d role brium	cy Rol n o e o n i and
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes UNIT - V Introduction – Nati	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major c its - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions an	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for gees. Organization and S greements in the Urugu Anti-dumping Measure sets ad advantages. Features	- Mon Recen ude an A politor Disc Structu ay Ro es.	etary at tren d direcy an equili ure - 1 bund	Polia ds- F ection d role briun Role -TRI	cy Role n o e o n in and IPS
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes UNIT - V Introduction – Nati Introduction – Nati	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major con- tis - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for greements in the Urugu Anti-dumping Measure xets nd advantages. Features are of money markets a	- Mon Recen ude an A politor Disc Structu ay Ro es.	etary at tren d direcy an equili ure - 1 bund	Polia ds- F ection d role brium Role -TRI	cy Rola n o e o n in and IPS
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes UNIT - V Introduction – Nati Indian financial system Reforms and recen	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and al Trade - Bilateral and Multilateral Trans- nce of Payments– Structure & Major c ints - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure t development – SEBI – Stock Exchan	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for greements in the Urugu Anti-dumping Measure xets nd advantages. Features are of money markets a	- Mon Recen ude an A politor Disc Structu ay Ro es.	etary at tren d direcy an equili ure - 1 bund	Polia ds- F ection d role brium Role -TRI	cy Rol n o e o n ii and IPS
Demand and Suppl of Finance Commis UNIT - III Introduction – Natu Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Natu functions of WTO TRIMS - Disputes UNIT - V Introduction – Natu Indian financial sys Reforms and recen	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and al Trade - Bilateral and Multilateral Trans- nce of Payments– Structure & Major c ints - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure t development – SEBI – Stock Exchan	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for greements in the Urugu Anti-dumping Measure xets nd advantages. Features are of money markets a	- Mon Recen ude an A politor Disc Structu ay Ro es.	etary at tren d direcy an equili ure - 1 bund	Polia ds- F ection d role brium Role -TRI	and s o e o c s o ets
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes UNIT - V Introduction – Nati Introduction – Nati	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and al Trade - Bilateral and Multilateral Trans- nce of Payments– Structure & Major c ints - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure t development – SEBI – Stock Exchan	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for greements in the Urugu Anti-dumping Measure xets nd advantages. Features are of money markets a	- Mon Recen ude an A politor Disc Structu ay Ro es.	etary at tren d direcy an equili ure - 1 bund	Polia ds- F ection d role brium Role -TRI	and s o e o c s o ets
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO FRIMS - Disputes UNIT - V Introduction – Nati Indian financial syst Reforms and recent Introduction to inte Textbooks:	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and al Trade - Bilateral and Multilateral Trans- nce of Payments– Structure & Major c ints - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Ag Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure t development – SEBI – Stock Exchan	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for ages. Organization and S greements in the Urugu Anti-dumping Measure kets and advantages. Featuress are of money markets a ges - Investor protection	- Mon Recent ude an A policor Discor Structu aay Ro es.	etary at tren d dire cy an equili ound compo pital r role	Polia ds- F ection d role brium Role -TRI onent narke of SE	an IPS
Demand and Suppl of Finance Commis UNIT - III Introduction – Nati Indian Internationa EXIM bank -Balar Balance of Paymer UNIT - IV Introduction – Nati functions of WTO TRIMS - Disputes UNIT - V Introduction – Nati Indian financial sys Reforms and recen Introduction to inte Textbooks: 1. Francis Cherunil	y of Money –RBI -Objectives of monet ssion. India's Trade Policy ure, meaning, significance, functions and I Trade - Bilateral and Multilateral Tra- nce of Payments– Structure & Major c its - Correction measures. World Trade Organization ure, significance, functions and advanta in promoting world trade - GATT -Aş Settlement Mechanism - Dumping and Money Markets and Capital Mark- ure, meaning, significance, functions and stems - Objectives, features and structure t development – SEBI – Stock Exchan- pernational finance.	Highlights of Budget- tary and credit policy - nd advantages. Magnitu ade Agreements - EXIN omponents - Causes for ages. Organization and S greements in the Urugu Anti-dumping Measure sets and advantages. Features are of money markets a ges - Investor protection t and Cases, Prentice H	- Mon Recent ude an A politor Disc Structu ay Ro es. and cap on and all of 1	etary at tren d dire cy an equili oure - 1 ound compo pital r role	Polia ds- F ection d role brium Role -TRI onent narke of SE	and s o

CIVIL ENGINEERING

Reference Books:

1.K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.

2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.

3. Chari. S. N (2009), International Business, Wiley India.

4.E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245

https://www.slideshare.net/rbalsells/fiscal-policy-ppt

https://www.slideshare.net/aguness/monetary-policy-presentationppt

https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982

https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt

https://www.slideshare.net/viking2690/wto-ppt-60260883

https://www.slideshare.net/prateeknepal3/ppt-mo

Cou	rse Code	Basic Civil Engineering Lab	oratory	L	Т	Р	С
	A01304		-	0	0	3	1.5
Pre	requisite	NIL	Semester		Ι	II	
			•				
Course	Objectives:						
•		general manual and machining skills in the	students				
•		he basic properties of materials					
•		of dignity of labor					
•	-	k place and selection of tools					
•	team workin	0					
Course	Outcomes (C						
•		s and equipment used and their respective					
•		erent types of materials and their basic pro					
•		measurements with the help of basic mea	suring tools/equipn	nent.			
•		r tools for a particular operation.					
•		ials and tools to make a job as per given sp	pecification/drawin	g.			
	Experiments:						
1.		f a building: The student should set out a l	building (single roo	m on	ly) as	per	the
2		ng plan using tape only.					
2.		f a building: The student should set out a l	building (single roo	m on	ly) as	per	the
2		ng plan using tape and cross staff.	/1 ' 1 ' 5 1	• 1 1	1.0	т	
3.		wall of height 50 cm and wall thickness 1 ¹ /		ish do	ona (1	NO	
4		red) - corner portion – length of side walls		h han	4 (NL		ton
4.		wall of height 50 cm and wall thickness 2 borner portion – length of side walls 60 cm.		n bon) moi	tar
5.		of Centre of gravity and Moment of inert		staal	conti	on ha	,
5.	actual measu		ia of a given toned	sicci	section	JII Uy	
6.		of plumbing and fixtures like Tap, T-Joint,	Flbow Bend Thre	adine	z etc.		
		d Finishing of wall	Libow, Dena, The	Juanny	5 010,		
		of wall putty and painting a wall					
		of base coat and laying of Tile flooring of	one square meter				
		of soil cement blocks for masonry and test		e strei	ngth		
		testing of Fly ash Blocks	0 1		0		
		of cover blocks for providing cover to rein	forcement				
Referen		· ¥					
1.	Workshop T	echnology Vol. I, II, III by Manchanda; In	dia Publishing Hou	ise, Ja	alandl	har.	
		raining Manual Vol. I, II by S.S. Ubhi; Ka					
		Vorkshop Practice by K Venkata Reddy; N					
4.		hop Practice Manual by T Jeyapoovan; Vi	ikas Publishing Ho	use (F) Ltd	., Ne	W
	Delhi						
5.		echnology by B.S. Raghuwanshi; Dhanpat					
6.	Workshop T	echnology by HS Bawa; Tata McGraw Hi	ll Publishers, New	Delhi	•		

Course Code 20A01302P	FLUID MECHANICS AND HY MACHINES LAB	DRAULIC		Т 0	P 3	C
20/1013021	(Common to Civil & Mecha	nical)	v	v	5	1
Pre-requisite	NIL	Semester]	II	
•						
Course Objectives:						
	this laboratory, the student will be able to					
	Ferent types flow measurement devices and	l working principl	es of v	variou	is pui	nps
and motors.						
Course Outcomes (
	the various tests in this laboratory the stud					
of discharge me	asuring devices and head loss due to sudd	en contraction and	l expa	nsion	in pi	pes
and working pri	nciples of various pumps and motors.					
	-					
List of Experiments	f Demenulli's constinu					
	of Bernoulli's equation. of Venturi meter.					
3. Calibration of						
		mifico hy constant	hand	ma a th	a d	
	on of Coefficient of discharge for a small of on of Coefficient of discharge for a small of the second statement of the second					
	on of Coefficient of discharge for a small control of the second se					
method.	on of Coefficient of discharge for an extern	iai moutil pièce by	Cons	stant I	leau	
	on of Coefficient of discharge for an extern	nal mouth piaco by	, vorio	hla h	and	
method.	in of Coefficient of discharge for an extern	iai moutii piece by	varia		cau	
	of contracted Rectangular Notch.					
	of contracted Triangular Notch. Determina	tion of friction fac	tor			
	on of loss of head in a sudden contraction.					
	on of loss of head in a sudden Expansion.					
	test on Impulse turbines					
	test on reaction turbines (Francis and Kar	olan Turbines)				
14. Impact of jet		, , , , , , , , , , , , , , , , , , , 				
	test on centrifugal pumps, determination	of operating point	and e	fficie	ncv	
References:		1 01			J	
1. Fluid Mecha	nics & Hydraulic Machines A Lab Manua	al by Ts Desmukh	(Auth	or),		
	cations (P) Ltd	5				
	nics & Machinery Laboratory Manual by	N Kumara Swamy	y (Aut	hor),		
	oks Distributors					
	of Fluid Mechanics & Machines by Gupt	a, Chandra (Autho	or),			
<u>cbspd</u> (Publi	sher)	·				
	ources/Virtual Labs: ://eerc03-iiith.vlabs.ac.in/					

Course Code	SURVEYING LA	B	L	Т	P	С
20A01303P		1	0	0	3	1.5
Pre-requisite	NIL	Semester		Ι	II	
equipment's and their Course Outcomes (CO): By performing the var principles of surveying levelling, thedolite sur List of Experiments: 1. Setting up of Right 2. Plane table survey; 3. Two Point Problem 4. Fly levelling: Heig 5. Fly levelling; Long 6. Theodolite Survey: 7. Finding the distanc	ious tests in this laboratory the stud g in chain surveying, compass surve veying and total station angles using cross staff finding the area of a given boundar by the plane table survey. In the instrument method and rise itudinal Section and Cross sections Determining the Horizontal and Ve e between two inaccessible points u y: Heights and distance problems us urve setting.	lent will be able to eying, plane table s ry e and fall method. of a given road pr ertical Angles using Theodolite	knov surve	v the ying,		ying
Kendall/Hunt Publi		⁷ Robert Hamilton	, <u>Geo</u>	rge l	Murg	<u>gel</u> of
Online Learning Resources 1. http://sl-iitr.vl						

Course Code 20A05305	Application Development with Python NIL Semester			Т 0	P 2	<u>C</u> 2
Pre-requisite				1 0 2 III		
110-requisite		Semester		11		
Course Objectives:						
	concepts of software engin	eering and life cycle models				
	ortance of Databases in ap	plication Development				
	ing skills in core Python					
• To understand the	importance of Object-orien	nted Programming				
Course Outcomes (CO):						
Students should be able to						
• Identify the issues	in software requirements s	specification and enable to wri	te SRS	doci	ımei	nts
for software develo	opment problems	-				
		o solve Real-life problems				
	r any real-world problem					
• Solve mathematica	l problems using Python p	programming language				
•						
Module 1.Basic concepts i	in software engineering a	and software project manage	ment			
-						
		e evolution of software engin	eering	tech	niqu	es
Software development life						
Software project managem	ent: project planning and p	project scheduling				
Task:						
1. Identifying the Requirem	ents from Problem Staten	nents				
Module 2. Basic Concepts	s of Databases					
		e Systems, view of Data, Dat				
		DL) Statements: (Create table.	Alter	table	e, Dr	0
table), Data Manipulation I	_anguage(DML) Statemen	<u>its</u>				
Task:					• 、	
		ments: (Create table, Alter tab	le, Dro	<u>p tab</u>	ole)	
2. Implement Data Manipu	ilation Language(DML) S	tatements				
Module 3. Python Progra	mming:					
		ta types, Operators, Input an	d outp	ut, (Cont	ro
Statements, Looping staten			1	,		
Python Data Structures:						
	ad honio anon-diana and di	non atulina tantin				
Strings: Creating strings and	nd basic operations on stri	ngs, string testing methods.				
	*		ction	Aron	men	ts
	unction- Calling a functi	ngs, string testing methods. ion- Types of functions-Fun	ction A	Argu	men	ts
Functions: Defining a fu Anonymous functions- Glo	unction- Calling a function- Calling a function bal and local variables			-		

CIVIL ENGINEERING

Modules and Packages: Standard modules-Importing own module as well as external modules Understanding Packages Powerful Lamda function in python Programming using functions, modules and external packages

Working with Data in Python: Printing on screen- Reading data from keyboard- Opening and closing file- Reading and writing files- Functions-Loading Data with Pandas-Numpy

Tasks:

1. OPERATORS

a. Read a list of numbers and write a program to check whether a particular element is present or not using membership operators.

b. Read your name and age and write a program to display the year in which you will turn 100 years old.

c. Read radius and height of a cone and write a program to find the volume of a cone.

d. Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean theorem)

2. CONTROL STRUCTURES

a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it using if...elif...else statement.

b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a particular word given by the user from the dictionary using while loop.

c. Write a Program to find the sum of a Series $1/1! + 2/2! + 3/3! + 4/4! + \dots + n/n!$. (Input :n = 5, Output : 2.70833)

d. In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number itself. Write a program to find out, if the given number is abundant. (Input: 12, Sum of divisors of 12 = 1 + 2 + 3 + 4 + 6 = 16, sum of divisors 16 >original number 12)

3: LIST

a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y = 5). b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63], odd numbers sum = 101, even numbers sum = 24)

c. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The numbers in odd index position: 25 47 84).

d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20 40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

4: TUPLE

a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples. test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)] b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input: test_list = [("GFG", "IS", "BEST"), ("GFg", "AVERAGE"), ("GfG",), ("Gfg", "CS")], Output : [(,,GFG", ,,IS", ,,BEST")].

c. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple. (Input : tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output : 3)

5: SET

a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x, x^*x) .

b. Write a program to perform union, intersection and difference using Set A and Set B.

CIVIL ENGINEERING

c. Write a program to count number of vowels using sets in given string (Input : "Hello World", Output: No. of vowels : 3)

d. Write a program to form concatenated string by taking uncommon characters from two strings using set concept (Input : S1 = "aacdb", S2 = "gafd", Output : "cbgf").

6: DICTIONARY

a. Write a program to do the following operations:

i. Create a empty dictionary with dict() method

ii. Add elements one at a time

iii. Update existing key"s value

iv. Access an element using a key and also get() method

v. Deleting a key value using del() method

b. Write a program to create a dictionary and apply the following methods:

i. pop() method

ii. popitem() method

iii. clear() method

c. Given a dictionary, write a program to find the sum of all items in the dictionary.

d. Write a program to merge two dictionaries using update() method.

7: STRINGS

a. Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to be symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one half of the string is the reverse of the other half or if a string appears same when read forward or backward.

b. Write a program to read a string and count the number of vowel letters and print all letters except 'e' and 's'.

c. Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method, Input : India is my country. Output : is my country)

d. Write a program to read a string and count how many times each letter appears. (Histogram).

8: USER DEFINED FUNCTIONS

a. A generator is a function that produces a sequence of results instead of a single value. Write a generator function for Fibonacci numbers up to n.

b. Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.

c. Write a fact() function to compute the factorial of a given positive number.

d. Given a list of n elements, write a linear_search() function to search a given element x in a list.

9: BUILT-IN FUNCTIONS

a. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by importing statistics library.

b. Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(), degrees(), radians() by importing math module.

c. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(), log10(), pow() by importing math module.

d. Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd() by importing math module.

10. CLASS AND OBJECTS

a. Write a program to create a BankAccount class. Your class should support the following methods for

i) Deposit

ii) Withdraw

CIVIL ENGINEERING

iii) GetBalanace

iv) PinChange

b. Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method that increases the balance by the appropriate amount of interest (Hint:use Inheritance). c. Write a program to create an employee class and store the employee name, id, age, and salary using the constructor. Display the employee details by invoking employee_info() method and also using dictionary (__dict__).

d. Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate the 3 types of access modifiers: public, private and protected.

11. FILE HANDLING

a. . Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform the following operations:

i. Count the sentences in the file.

ii. Count the words in the file.

iii. Count the characters in the file.

b. . Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only lower case alphabets and display the number of lines copied.

c. Write a Python program to store N student's records containing name, roll number and branch. Print the given branch student's details only.

References:

1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.

2. RamezElmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013. 3.Reema Thareja, "Python Programming - Using Problem Solving Approach", Oxford Press, 1st Edition, 2017.

4. Larry Lutz, "Python for Beginners: Step-By-Step Guide to Learning Python Programming", CreateSpace Independent Publishing Platform, First edition, 2018

Online Learning Resources/Virtual Labs:

1. http://vlabs.iitkgp.ernet.in/se/

2. http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

3. https://python-iitk.vlabs.ac.in

Course Code	Universal Human V		L	Т	Р	С
20A52201	(Common to all bran	,	3	0	0	0
Pre-requisite	NIL	Semester		Ι	II	
Course Objectives:						
	nt of a holistic perspective based of	on self-exploration	about 1	themse	lves	(human
	ly, society and nature/existence.	1				
	ng (or developing clarity) of the ha	rmony in the humai	n being	, famil	y, soc	iety
and nature/e	xistence	•	C			•
• Strengtheni	ng of self-reflection.					
	nt of commitment and courage to ac	t.				
Course Outcomes (
By the end of the						
	expected to become more aware of	f themselves, and t	heir su	rround	ings (family
society, natu						
	become more responsible in life,			ns with	1 sust	ainable
	hile keeping human relationships a	nd human nature in	mind.			
	have better critical ability.	·/ // 1	1 4 1	1	1	. 1
	also become sensitive to their com		vhat the	ey hav	e und	erstood
	es, human relationship and human hat they would be able to apply wha		their		if in d	ifforon
	ettings in real life, at least a beginn					meren
uay-10-uay s	ettings in real me, at least a beginn	ing would be made	in this	unecu	on.	
UNIT - I					8	Hrs
Validation- • Continuous • Right unders of aspiration • Understandi • Method to fu levels. Include practice ses living with respon	ation—what is it? - Its content and pr as the process for self-exploration Happiness and Prosperity- A look a standing, Relationship and Physical is of every human being with their of ng Happiness and Prosperity correct ilfil the above human aspirations: u sions to discuss natural acceptance sibility (living in relationship, I ce based on liking-disliking	t basic Human Asp Facility- the basic r correct priority tly- A critical appra nderstanding and liv in human being as	virations requirer isal of ving in the ini	s nents f the cur harmo nate ac	For ful rent s ny at	filment cenaric various nce for
UNIT - II	ž ž				8	Hrs
 Understandi Understandi Understandi Understandi Understandi Understandi Understandi Physical nee Programs to Include practice sessime. Identifying from 	mony in the Human Being - Harmong human being as a co-existence of ng the needs of Self ('I') and 'Body ng the Body as an instrument of 'I' ng the characteristics and activities ng the harmony of I with the Body eds, meaning of Prosperity in detail ensure Sanyam and Health. Sions to discuss the role others have m one's own life. Differentiate be g health vs dealing with disease	of the sentient 'I' an ' - happiness and p (I being the doer, s of 'I' and harmony dy: Sanyam and He played in making n	ohysical eer and in 'I' ealth; c nateria	l facilit l enjoy correct l goods	ty er) appra	aisal of lable to
UNIT - III	g nearth vo deaning with disease				9	Hrs
01111 - 111					0	1115

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

CIVIL ENGINEERING

Understanding H	larmony in the Family and Society- Harmony in Human- Human Relations	hip
	ing values in human-human relationship; meaning of Justice (nine universation)	
	nships) and program for its fulfilment to ensure mutual happiness; Trust and	Respect
as the fou	indational values of relationship	
	nding the meaning of Trust; Difference between intention and competence	
	nding the meaning of Respect, Difference between respect and differentia	tion the
		uon, me
	ent values in relationship	
 Understar 	nding the harmony in the society (society being an extension of family): Re-	solution
Prosperity	y, fearlessness (trust) and co-existence as comprehensive Human Goals	
	g a universal harmonious order in society- Undivided Society, Universa	1 Order
	ily to world family.	
110111 Talli	ity to world family.	
Include practice s	sessions to reflect on relationships in family, hostel and institute as extended	d family
	s, teacher-student relationship, goal of education etc. Gratitude as a university	
	Discuss with scenarios. Elicit examples from students' lives	Sui vuiuv
		0.11
UNIT - IV		8 Hrs
Understanding H	Iarmony in the Nature and Existence - Whole existence as Coexistence	
• Understandi	ing the harmony in the Nature	
	ectedness and mutual fulfilment among the four orders of nature- recyclab	vility
		Jiiity
	regulation in nature	_
 Understan 	nding Existence as Co-existence of mutually interacting units in all- perv	vasive
space		
	perception of harmony at all levels of existence.	
	sessions to discuss human being as cause of imbalance in nature (film "Ho	me" car
		une car
	on, depletion of resources and role of technology etc.	
UNIT - V		10 Hrs
Implications of tl	he above Holistic Understanding of Harmony on Professional Ethics	
 Natural a 	cceptance of human values	
	eness of Ethical Human Conduct	
	Humanistic Education, Humanistic Constitution and Humanistic University	o1
	Trumanistic Education, Trumanistic Constitution and Trumanistic Universe	al
Order		-
	nce in professional ethics: a. Ability to utilize the professional competent	
augmenti	ng universal human order b. Ability to identify the scope and characteri	stics of
	iendly and eco-friendly production systems, c. Ability to identify and c	
	te technologies and management patterns for above production systems.	ie verop
• Case stud	lies of typical holistic technologies, management models and production	
systems		
	or transition from the present state to Universal Human Order: a. At the le	evel of
	I: as socially and ecologically responsible engineers, technologists and ma	
	1. as sociarly and coordination responsible engineers, technologists and ma	magers
	level of society: as mutually enriching institutions and organizations	
 Sum up. 		
Include practice	Exercises and Case Studies will be taken up in Practice (tutorial) Session	s eg. To
	ict as an engineer or scientist etc.	0
	-	
Textbooks:		<u> </u>
	r, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Pro	tessiona
	nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1	
2. R R Gaur.		n Values
	, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Huma essional Ethics", 2 nd Revised Edition, Excel Books, New Delhi, 2019. ISBN	

87034-53-2

Reference Books:

CIVIL ENGINEERING

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful –Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)

MOE OF CONDUCT

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

Course Code	Mathematical Modeling & Optimizati	on Techniques		T	P	C
20A54401	NIL	Semester	3	0	0 IV	3
Pre-requisite	INIL	Semester			1 V	
Course Objectives:						
	he students to classify and formulate real-li	fe problem for mo	odelin	g as c	optimi	zation
problem	ine statemes to endoing and formatice fear in		/401111	5 u	Puin	Zution
Course Outcomes ((0):					
	of Course, students will be able to					
	the classifications and stages of mathematic	cal modeling				
	ouilding of mathematical models	0				
	havior of mathematical models					
4. formulate a l	inear programming problem and solve it by	various methods				
	nal solution in assignment jobs, give transp	ortation of items f	rom s	ource	es to	
destinations.			1			
UNIT - I	Introduction to Modelling, Building M Models		8 H			
What is mathematica	l modelling? What objectives can modellin	g achieve? Classi	ficati	ons o	f mod	els
Stages of modelling	. Systems analysis- Making assumptions- F	low diagrams- Ch	oosin	g mat	hema	tical
equations.						
UNIT - II	Studying Models		8 H	rs		
	iterature- Analogies from physics-Data exp - Asymptotic behaviour- Sensitivity analys		del ou	ıtput		
UNIT - III	Linear programming problems(LPP)		9 H	rs		
Linear programming method.	problems (LPP)-Graphical method-Simple	x method-Big M N	Metho	od-Du	al sin	plex
UNIT - IV	Transportation&Assignment Problem		11]	Irs		
Formulation of trans	portation model, Basic feasible solution usi	ng different metho	ods, O	ptim	ality N	lethods,
	tation problem, Degeneracy in transportation					
	nt Problem: Formulation, unbalanced assign	nment problem, Ti	ravell	ing sa	alesma	ın
problem.						
UNIT - V	Game Theory		111			
	es, Two person-Zero sum game, Mini max a			game	s with	n and
	, Rules of dominance, Solving a 2/2 game u	sing graphical me	thod.			
Textbooks:						
	al Modeling: by Majid Jaberi-Douraki and S Research , S.D. Sharma.	Seyed M. Moghad	as			
*	Cescaren , S.D. Sharma.					
Reference Books:	1 Madala in Applia 1 Mada and A D. Taala					
	al Models in Applied Mechanics A.B. Tayle Research, An Introduction, Hamdy A. Taha,		rs.			
Online Learning Re	esources:					
	bris.ac.uk/~madjl/course_text.pdf					

CIVIL ENGINEERING

Course Code	Engineering Geology		L T P C
20A01401T	NII	Comoston	3 0 0 3 IV
Pre-requisite	NIL	Semester	10
Course Objectiv	ves•		
• To under	rstand weathering process and mass movemen	 t	
	iguish geological formations	c .	
	ify geological structures and process of rock m	nass quality.	
 To ident 	ify subsurface information and groundwater po	otential sites through	geophysical
investiga	ations		
	geological principles of mitigation of natural	hazards and select s	ites for dams
and tunn			
Course Outcom			
	course student will be able to		
	sic knowledge on characteristics of rocks and		
	sic knowledge on characteristics of minerals. and differentiate rocks using geological classif	fication	
	it geo physical investigations for infrastructura		
	oncepts of structural geology for civil engineer		
UNIT - I	PHYSICAL GEOLOGY	ing structures.	Lecture Hrs
	1 engineering – branches of geology – stru	cture of earth and	
	cks – scale of weathering – soils – landforms		
	er and sea – relevance to civil engineering. Pla		
zones in India.			-
			•
UNIT - II	MINEROLOGY		Lecture Hrs
Amphibole - ho	ties of minerals – Quartz group, Feldspar group rnblende, Mica – muscovite and biotite, Calci		
minerals - Iron o	res; pyrite; Chlorite		
UNIT - III	PETROLOGY		Lecture Hrs
	f rocks, distinction between Igneous, Sed		
	perties of rocks. Description, occurrence, eng		
	Dolerite, Basalt, Sandstone, Limestone, Late	rite, Shale, Quartzit	e, Marble, Slate,
Gneiss and Schis	st.		
UNIT - IV	STRUCTURAL CEOLOCY AND CEOR	HVSICAT	Locturo Ure
OINII - IV	STRUCTURAL GEOLOGY AND GEOP METHODS	HISICAL	Lecture Hrs
Geological maps	s – attitude of beds, study of structures – folds.	faults and joints -1	relevance to civil
0 1	ophysical methods – Gravity methods. Mag		
	s, Radio metric methods and Geothermal metho		
seismic refractio			5
UNIT - V	APPLICATION OF GEOLOGICAL INV	ESTIGATIONS	Lecture Hrs
Remote sensing	for civil engineering applications; site selection	on for dams and tunr	els – Geological
	sary for design and construction of Dams, Rese		
	investigations and mining - Coastal pro	tection structures.	Investigation of
	es and mitigation.		
Textbooks:		N. 0. 1 T. 11 (2)	
	naKesavulu, "Text Book of Engineering Geolo	ogy", 2nd Edition (2	009), Macmillan
Publishe		Dress Dut I + d U.	erabad 2012
2. Vasudev	Kanithi, "Engineering Geology", Universities	эттезэ гуг Liu, Пуй	Jiauau. 2012.

CIVIL ENGINEERING

|--|

- 1. Parbin Singh, "Engineering and General Geology", 8th Edition (2010), S K Kataria& Sons.
- 2. D.Venkata Reddy, "Engineering Geology, Second edition", Vikas Publishing house, Pvt, Ltd Richard E. Goodman, "Engineering Geology, Rock in Engineering Construction", John Wiley & Sons, Inc. 1993.
- 3. S.K.Duggal, H.K Pandey, N.Rawal, "Engineering Geology", Mc.Graw Hill Education (India) Pvt. Ltd
- 4. Billings, M. P., "Structural Geology", Prentice-Hall India, 1974, New Delhi

Online Learning Resources:

- 1. https://nptel.ac.in/courses/105/105/105105106/
- 2. <u>https://freevideolectures.com/course/87/engineering-geology</u>
- 3. https://www.edx.org/course/geology-and-engineering-geology
- 4. https://courses.lumenlearning.com/geo/chapter/reading-the-branches-of-geology/
- 5. <u>https://www.coursera.org/courses?query=geology</u>

Course Code	STRUCTURAL .	ANALYSIS -I		T	P	C 3
20A01402 Pre-requisite	Engineering Mechanics	Semester	3	0 Г	0 V	3
		1	1			
Course Objectives	:					
	trate analytical methods f	for determining stren	ngth & sti	ffness and	l assess s	stability
of structura						
	he student analyze indete					
	e student to understand the	he analysis procedui	res for ana	alyzing fiz	ked and	
Continuous						
	the student to undergo an	alysis procedure usi	ng slope	deflection	method	and
	tribution method.		1 · 1	1		
	he student to analyze the	two hinged and three	e hinged	arches		
Course Outcomes				a ma hai ma a d	1	
	e deflection at any point of the sector of t			ombined	loads	
	gy theorems for analysis determinate structures w					
	eams and portal frames u			nont distri	ibution n	athods
	nding moment, normal th					lethous
• Anaryze be	nonng moment, normai ti	in ust and radial shea	i ili tile ai	CIICS		
UNIT - I	Pagia Analysis of Ind					
		eterminate Structu	res			
		eterminate Structu		energy d	ue to ax	ial loa
Introduction-Strain	energy in linear elastic	system, expression	of strain	energy d	ue to ax	ial load
Introduction-Strain bending moment an	energy in linear elastic d shear force – Castiglia	system, expression no's first theorem -]	of strain Deflection	ns of simp	le beams	s and pi
Introduction-Strain bending moment an jointed trusses -	energy in linear elastic d shear force – Castiglia Indeterminate Structural	system, expression no's first theorem - Analysis – Deter	of strain Deflection mination	ns of simp of station	ble beams c and k	s and pi
Introduction-Strain bending moment an jointed trusses -	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to	system, expression no's first theorem - Analysis – Deter	of strain Deflection mination	ns of simp of station	ble beams c and k	s and pi inemat
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem.	system, expression no's first theorem - Analysis – Deter two degrees of int	of strain Deflection mination	ns of simp of station	ble beams c and k	s and pi
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti	system, expression no's first theorem - 1 Analysis – Deter two degrees of int	of strain Deflection mination ernal and	ns of simp of static external	ble beams c and k indetern	s and pi inemati ninacy
Introduction-Strain bending moment an bointed trusses - 1 ndeterminacies - 5 Castigliano's secon UNIT - II Introduction to stati	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three	of strain Deflection mination ernal and noments-	ns of simp of static external uniformly	ole beams c and k indetern / distribu	s and pi inemati ninacy ted load
Introduction-Strain pending moment an ointed trusses - 1 ndeterminacies - 5 Castigliano's secon UNIT - II Introduction to stati central point load, o	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three in ber of point loads,	of strain Deflection mination ernal and noments- uniformly	ns of simp of statio external uniformly varying	e and k indetern distribu load, co	s and pi inemati ninacy ted load uple an
Introduction-Strain pending moment an ointed trusses - I ndeterminacies - S Castigliano's secon UNIT - II Introduction to stati central point load, o combination of loa	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three in ber of point loads,	of strain Deflection mination ernal and noments- uniformly	ns of simp of statio external uniformly varying	e and k indetern distribu load, co	s and prinemation in a cylin a
ntroduction-Strain pending moment an ointed trusses - I ndeterminacies - S Castigliano's secon UNIT - II ntroduction to stati central point load, o combination of loa	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three in ber of point loads,	of strain Deflection mination ernal and noments- uniformly	ns of simp of statio external uniformly varying	e and k indetern distribu load, co	s and prinemation in a cylin a
Introduction-Strain bending moment an ointed trusses - 1 ndeterminacies - S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support.	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three maker of point loads, ending moment diag	of strain Deflection mination ernal and noments- uniformly	ns of simp of statio external uniformly varying	e and k indetern distribu load, co	s and pi inemat ninacy ted loa uple ar
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Met	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams s- theorem of three p aber of point loads, ending moment diag	of strain Deflection mination ernal and noments- uniformly rams –ef	ns of simp of static external uniformly varying fect of sin	ble beams c and k indeterm distribu load, co hking of	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Methation ation of slope deflection	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three makes theorem of three makes and a point loads, and a moment diag	of strain Deflection mination ernal and noments- uniformly rams –ef	ns of simp of statio external uniformly varying fect of sin	e and k indetern distribu load, co nking of beams	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Met	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three makes theorem of three makes and a point loads, and a moment diag	of strain Deflection mination ernal and noments- uniformly rams –ef	ns of simp of statio external uniformly varying fect of sin	e and k indetern distribu load, co nking of beams	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Methation ation of slope deflection	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three makes theorem of three makes and a point loads, and a moment diag	of strain Deflection mination ernal and noments- uniformly rams –ef	ns of simp of statio external uniformly varying fect of sin	e and k indetern distribu load, co nking of beams	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Methation ation of slope deflection	system, expression no's first theorem - Analysis – Deter two degrees of int inuous Beams as- theorem of three makes of point loads, ending moment diag hod a equation- applicat	of strain Deflection mination ernal and noments- uniformly rams –ef	ns of simp of statio external uniformly varying fect of sin	e and k indetern distribu load, co nking of beams	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV	energy in linear elastic d shear force – Castiglia indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Meth ation of slope deflection of supports- Analysis of	system, expression no's first theorem - 1 Analysis – Deter two degrees of int inuous Beams is- theorem of three in the of point loads, ending moment diag hod n equation- applicat f single bay, single Method	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p	uniformly varying fect of sin	distribution distribution distribution load, contained beams you	s and pi inemati ninacy ted load uple an suppor with an ling sid
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV Introduction to mo	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Contine cally indeterminate beam eccentric point load, nun ds – Shear force and Beas a support. Slope-Deflection Meth ation of slope deflection of supports- Analysis of Moment Distribution	system, expression no's first theorem - 1 Analysis – Deter two degrees of int nuous Beams as- theorem of three maker of point loads, ending moment diag hod n equation- applicat f single bay, single Method od- application to c	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p	uniformly varying fect of sin ontinuous ortal fram	distribution distribution distribution load, contained beams you	s and pi inemati ninacy ted loa uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV Introduction to mo	energy in linear elastic d shear force – Castiglia Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Contine cally indeterminate beam eccentric point load, nun ds – Shear force and Beam a support. Slope-Deflection Meth ation of slope deflection of supports- Analysis of Moment Distribution ment distribution method	system, expression no's first theorem - 1 Analysis – Deter two degrees of int nuous Beams as- theorem of three maker of point loads, ending moment diag hod n equation- applicat f single bay, single Method od- application to c	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p	uniformly varying fect of sin ontinuous ortal fram	distribution distribution distribution load, contained beams you	s and pi inemati ninacy ted load uple an suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies – S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV Introduction to mo settlement of suppo	energy in linear elastic d shear force – Castiglia: Indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Contine cally indeterminate beams eccentric point load, nun ds – Shear force and Beams a support. Slope-Deflection Methation ation of slope deflection of supports- Analysis of Moment Distribution ment distribution methot	system, expression no's first theorem - 1 Analysis – Deter two degrees of int inuous Beams as theorem of three makes theorem of three makes as theorem of three makes as theorem of three makes as theorem of three makes in the theorem of three makes and the theorem of the theorem of the theorem and the theorem of the theorem of the theorem and the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem and the theorem of the theorem of the theorem of the theorem of the theorem and the theorem of theorem	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p	uniformly varying fect of sin ontinuous ortal fram	v distribu load, co hking of beams when include	s and pinematininacy ted loa uple ar suppor
Introduction-Strain bending moment an jointed trusses - 1 indeterminacies - S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV Introduction to mo settlement of suppo UNIT - V Introduction- hinge force – three hinge	energy in linear elastic d shear force – Castiglia indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Meth ation of slope deflection of supports- Analysis of Moment Distribution ment distribution methor rts. Analysis of single sto Arches s-transfer of load to arch d arches – circular arch	system, expression no's first theorem - 1 Analysis – Deter two degrees of int inuous Beams as theorem of three makes of point loads, ending moment diag hod n equation- applicat f single bay, single Method od- application to corey ,portal frames – tes-linear arch-hinge	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p ontinuous including s in the a erent leve	uniformly varying fect of sin ontinuous ortal fram beams v g Sway rch-arch a l-Two hin	v distribu load, co hking of beams v he includ with and action-He nged arcl	s and pi inemati ninacy ted load uple an suppor with an ling sic withou
Introduction-Strain pending moment an ointed trusses - 1 ndeterminacies - S Castigliano's secon UNIT - II Introduction to stati central point load, of combination of loa effect of rotation of UNIT - III Introduction- derive without settlement sway. UNIT - IV Introduction to mo settlement of suppo UNIT - V Introduction- hinge force - three hinge	energy in linear elastic d shear force – Castiglia indeterminate Structural Solution of trusses up to d theorem. Fixed Beams & Conti cally indeterminate beam eccentric point load, nun ds – Shear force and Be a support. Slope-Deflection Metl ation of slope deflection of supports- Analysis of Moment Distribution ment distribution methor rts. Analysis of single sto Arches s-transfer of load to arch	system, expression no's first theorem - 1 Analysis – Deter two degrees of int inuous Beams as theorem of three makes of point loads, ending moment diag hod n equation- applicat f single bay, single Method od- application to corey ,portal frames – tes-linear arch-hinge	of strain Deflection mination ernal and noments- uniformly rams –eff ion to co storey, p ontinuous including s in the a erent leve	uniformly varying fect of sin ontinuous ortal fram beams v g Sway rch-arch a l-Two hin	v distribu load, co hking of beams v he includ with and action-He nged arcl	s and pi inemati ninacy ted load uple an suppor with an ling sid withou

CIVIL ENGINEERING

Textbooks:

- 1. C. S. Reddy, "Basic Structural Analysis", Tata McGraw Hill
- 2. S. Ramamurtham, "Theory of Structures", Dhanpat Rai Publishing Company (p) Ltd, 2009

Reference Books:

- 1. Timoshenko & Young, "Theory of Structures", Tata McGraw Hill
- 2. S.S. Bhavikatti, "Structural analysis", Volume 1 and 2, Vikas publishing house pvt. Ltd.
- 3. Dr.Vaidyanathan, Dr.P.Perumal, "Comprehensive structural analysis", Vol-II, Laxmi Publications (P) Ltd.
- 4. Junarkar S. B., "Structural Mechanics", Vol I & II, Charotar Publishers

Online Learning Resources:

- 1. https://nptel.ac.in/courses/105/105/105105166/
 - 2. <u>https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-571-structural-analysis-and-control-spring-2004/syllabus/</u>

3. <u>https://www.udemy.com/course/statics-for-engineering-undergrads/?utm_source=adwords&utm_medium=udemyads&utm_campaign=LongTail_la_.EN_cc.INDIA&utm_content=deal4584&utm_term=__ag_118445032537__ad_53309411 2755_.kw__de_c_dm__pl__ti_dsa-1212271230479__li_9040221_.pd___&matchtype=b&gclid=CjwKCAjw9aiIBhA1EiwA J_GTSi9B1-_IRzq7FUiND1u-mrYI7l0tzcz3Tv35FKdG1Tpl-WkGjHlmbxoC920QAvD_BwE</u>

Course Code 20A01403T	Concrete Technology		T	P	C 2
	NIL Comostor	3		0 V	3
Pre-requisite	NIL Semester		1	V	
Course Objectives:					
	unctional role of ingredients of conc	rete and a	pply this l	knowledg	e to mix
design philosop			pp-J mis i		• ••• •••
	amental knowledge in the fresh and	hardened	l propertie	s of conci	rete
	e testing methodology to evaluate the				
and hardened st	age				
	nowledge on the behavior of concret				
	nowledge on the special concretes an		a concrete	e mix which	ch fulfils
	perties for fresh and hardened concr	ete			
Course Outcomes (CO):					
At the end of the course		1			
	ous ingredients of concrete and their				
	edge on the fresh and hardened prop be behavior of concrete with response			ad	
	e mixes using various methods.	to suesse	s develope	eu	
	concretes for accomplishing perform	mance lev	vels		
- Tereerve speeru	concretes for accomptishing perior		015.		
UNIT - I	Ingredients of concrete				
	- I.S. Specifications. Admixtures – c ns – classification of mineral admixt				
UNIT - II	Properties of concrete				
workability for conventi (V-Funnel, L-Box, U- Ratio(Abram's Law)-Ge Split Tensile and Flex	g of concrete-workability-factors in ional concrete (Slump Cone, Compa Box, Slump Flow and J–Ring) el Space Ratio-tests on hardened con ural)-Semi Destructive Tests (Core und Hammer-UPV - Radiological m	ction Fact Harden crete -Des Cutter	tor and Ve ed concre structive T	e-Bee tes ete: Wate ests (Com	t) & SCC er/Cement pression,
UNIT - III	Elasticity, Shrinkage and Creep				
Curing of concrete -met Elasticity-Poisson's Rat	hods of curing-effects of improper c io-Dynamic Modulus of Elasticity-S bisture Movement-Creep of Concrete	Shrinkage	and vario	us types -	
UNIT - IV	Concrete Mix Design				
	ete Mixes-factors influencing - Road				
	pility-Quality Control and Statistical	Methods	– Mix De	sign of :	High
Strength concrete – High	h Performance Concrete.				
UNIT - V	Special Concretes				
Introduction - Mix Desi	gn – Applications of : Light Weight ensity Concrete – Fiber Reinforced C				

Textbooks:	
1. A. M. Neville, "Properties of Concrete", Pearson Publication – 4th Edition	
2. M.S. Shetty, A. K. Jain, "Concrete Technology Theory and Practice", S. Chand and	
Company Limited, New Delhi	
Reference Books:	
1. M. L. Gambhir, "Concrete Technology", Tata Mc. Graw Hill Publishers, New Delh	
2. N. Krishna Raju, "Design of Concrete Mixes", CBS Publishers.	
3. P. K. Mehta And J. M. Monteiro, "Concrete: Micro Structure, Properties and Materi	als"
Mc-Graw Hill Publishers	
4. J. Prasad, C.G.K. Nair, "Non-Destructive Test and Evaluation of Materials", Tata	
Mcgraw Hill Publishers, New Delhi	
5. Newman, John & Choo, Ban Sang. "ADVANCED CONCRETE TECHNOLOGY-	
Constituent Materials" Elsevier 2003.	
Online Learning Resources:	
1. https://onlinecourses.nptel.ac.in/noc19_ce20/preview	
2. https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-054-mechanics-a	und-
design-of-concrete-structures-spring-2004/download-course-materials/	
3. <u>https://www.udemy.com/course/properties-of-fresh-hardened-</u>	
concrete/?utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_C	latcha
ll la.EN cc.INDIA&utm content=deal4584&utm term= . ag 82569850245 . ad	5332
<u>20805574 . kw . de c . dm . pl . ti dsa-</u>	
52949608673li_9040221pd&matchtype=b&gclid=CjwKCAjwmK6IBhB	<u>qEiw</u>
AocMc8h6K0s2ri4I8hJYzyJ3MytwTDb7ZlC8kzKe-n6t-	-
649itkeOUSg4eRoChA8QAvD_BwE	

Course Code	Environme	ental Engineering - I	L	Т	P	С
20A01404T			3	0	0	3
Pre-requisite	NIL	Semester		I	V	
Course Objectives:						
• To teach requireme						
		treatment methodologies	5.			
 To provide facts or 	Air pollution	and control.				
• To enable with des	ign concepts o	f wastewater treatment U	JNITs			
• To throw light on i	mportance of p	plumbing.				
•						
Course Outcomes (CO):						
At the end of the course, the						
		r and purification proces	S			
		reatment of wastewater.				
Assess the impact of Understand conserved			ant			
Understand conseqDesign domestic pl		d waste and its managem	lent			
• Design domestic pl	unionig syster	115				
UNIT - I	Water quality	y and treatment:				
Water quality: Sources of V			equirem	ent for di	fferent b	eneficial
uses, Water quality standar						
for planned water supply s						
Components of water supp						
used in W/S systems, ser	vice reservoir	s and design. Water Tr	reatment	: aeration	n, sedim	entation,
coagulation flocculation, fi	ltration, disinf	ection, advanced treatme	ents like	adsorptio	on, ion e	xchange,
membrane processes						
UNIT – II	Sewage and	Treatment				
Domestic and Storm water			ariations	. Convey	ance of	sewage-
Sewers, shapes design pa						
Sewerage, Sewer appurten						
Quantification and design of						
of sewage, National River						
anaerobic treatment system		and attached growth syst	ems, recy	ycling of	sewage	 quality
requirements for various pu	irposes.					
	A := D - 11(
UNIT - III	Air Pollution		Manit	ming of a	in no11+	onto Air
Composition and properties pollution- Occupational haz						
Automobile engines, quality						
Control measures for Air p			Terations	sinp. An v	quality s	lanuarus,
Control measures for 7 m p	onution, const	ruction and minitations.				
UNIT - IV	Solid Waste	Management				
Municipal solid waste-Con	mposition - c	hemical and physical p				
treatment and disposal. wa						
activities - biomedical wa			onment.	Disposal	l of soli	d waste-
Disposal methods- Integrat	ed solid waste	management.				

CIVIL ENGINEERING

UNIT - V Domestic Plumbing

Types of home plumbing systems for water supply and waste water disposal, high rise building plumbing-Pressure reducing valves, Break pressure tanks, Storage tanks, Building drainage for high rise buildings, various kinds of fixtures and fittings. Role of Government authorities in water supply, sewerage disposal

Textbooks:

- 1. G. S. Birdi, "Water supply and sanitary Engineering", Dhanpat Rai & Sons Publishers.
- 2. Peavy, H.S, Rowe, D. R. Tchobanoglous, "Environmental Engineering", Mc-Graw Hill International Editions, New York 1985.

Reference Books:

- 1. B.C. Punmia, Ashok Jain & Arun Jain, "Water Supply Engineering", Vol. 1, Waste water Engineering, Vol. II, Laxmi Publications Pvt. Ltd, New Delhi.
- 2. MetCalf and Eddy, "Wastewater Engineering", Treatment, Disposal and Reuse, Tata McGraw-Hill, New Delhi.
- 3. S. M. Patil, "Plumbing EngineeringTheory, Design and Practice", 1999.
- 4. K. N. Duggal, "Elements of Environmental Engineering", S. Chand Publishers.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103/107/103107084/
- 2. https://ocw.mit.edu/courses/environment-courses/
- 3. <u>https://learningpath.org/articles/Free_Online_Environmental_Engineering_Courses_from_</u> <u>Top_Universities.html</u>
- 4. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ge22/

(Course Code	ENGINEERING G	GEOLOGY LAB	L	Т	P	С
	0	3	1.5				
I	Pre-requisite	NIL	Semester		Ι	V	
<u>C</u>							
	e Objectives:	to anoble the students to iden	tifes the shrund of above of				
I ne ob	ject of the course is	to enable the students to iden	itily the physical charact	eristic	s vari	lous r	OCK
	e Outcomes (CO):						
At the	end of the course th	e students will be able to cla	assify various types of re	ocks, t	heir j	prope	erties
and the	ey will be familiar w	ith interpretation of geologic	al maps.				
List of	Experiments:						
		of minerals: Mega-scopic id	lentification of Rock for	ming	mine	rals –	-
	Quartz group, Feld			U			
2.	Identification of Re	ock forming minerals Garnet	group, Mica group				
3.		of minerals: Mega-scopic id		lorite,	Olivi	ine,	
		Tourmelene, Calcite, Gypsu					
4.		of minerals: Mega-scopic id		ning m	inera	ls –	
		te, Pyrite, Pyralusite, Graphi					
5.		ption and identification of Ig		Granit	te, Pe	gmat	ite,
		Syenite, Granite Poryphery, I			_	-	
6.		ption and identification of Se		stone	, Feri	rugin	eous
7		tone, Shale, Laterite, Congla		•.	~ ·		
7.		ption and identification of M		tite - 0	Jrani	te Gr	ieiss
8.		Biotiteschist, Marble, Khon drawing of sections for geolo		ad had			
o. 9.		drawing of sections for geolo			15		
		drawing of sections for geolo			mitie	s etc	
	Simple Structural (Stear maps showing and	omor	mue	5 010.	
		k using laboratory tests.					
	0	<i></i> ,,					

Course Code	Concrete Mater	rials Lab	L	Т	P	С
20A01405			0	0	3	1.5
Pre-requisite	NIL	Semester		Ι	V	
Course Objectives:						
	physical characteristics of ceme		regate	es		
• To find the various p	properties of green and hardene	d concrete.				
Course Outcomes (CO):	atu danat mu'll ha ahla					
At the end of the course, the						
	ristics of fine and coarse aggreg					
• To understand the w	orkability behaviour of concret	te infougn various tests				
List of Experiments:						
1. Grading Curve of Co	Darse aggregates					
2. Grading Curve of Fi	ne aggregates					
3. Bulking of Fine aggr						
4. Specific gravity of c	oarse aggregate					
5. Specific gravity of I	Fine aggregate					
6. Specific gravity of C	lement					
7. fineness of Cement						
8. Normal Consistency	of Cement					
9. Initial and final setti						
10. Soundness test of Ce	ement					
11. Compressive Streng						
	factor and Vee-Bee time tests of	on concrete.				
13. Compressive strengt						
14. Split tensile strength	of concrete					
15. Non destructive tests	s on concrete (any two)					

CIVIL ENGINEERING

Course Code	ENVIRONMENTAL ENGINE	EERING LAB	L	Т	Р	С		
20A01404P			0	0	3	1.5		
Pre-requisite NIL Semester IV								
Course Objectives:								
The object of the course is to	o enable the students to identify the c	characteristics of v	vater	samp	ole			
Course Outcomes (CO):								
At the end of the course, the	student will be able to Understand a	bout quality of wa	ater st	anda	rds			
List of Experiments:								
	I and Electrical Conductivity (Salini		oil.					
	estimation of Total Hardness–Calcium	m & Magnesium.						
3. Determination of Al								
4. Determination of Ch	nlorides in water and soil							
5. Determination and I settleable solids by 1	Estimation of total solids, organic sol	lids and inorganic	solid	s and				
6. Determination of Iro								
	ssolved Oxygen with D.O. Meter &	Wrinklers Method	and	R O I	D			
	P, K values in solid waste	Winkiers Wethod	ana	D.O.I	υ.			
	– Temperature, Colour, Odour, Tur	hidity Taste						
10. Determination of C.		bluity, Tuste.						
11. Determination of O								
12. Determination of Ch								
13. Presumptive Colifor								
	m wst.							
References:								

1.G. S. Birdi "Water supply and sanitary Engineering", Dhanpat Rai & Sons Publishers. 2.Peavy, H.S, Rowe, D. R. Tchobanoglous, "Environmental Engineering", Mc-Graw –Hill International Editions, New York 1985

CIVIL ENGINEERING

Course Code		Soft Skills	L	Т	P	С
20A52401			1	0	2	2
Pre-requisite	NIL	Semester		IV		
Course Objectives						
Course Objectives: • To encourage	a all round daval	opment of the students b	v focusing on s	oft abrilla		
		f critical thinking and pr				
		and organizational skills				
		ieterogeneous teams	unougn group a	cuvines		
Course Outcomes (leterogeneous teams				
By the end of the pro		ould be able to				
		f effective communicativ	ve skills			
		nal level through emotio				
		n problem solving	mai interingenee			
		ization for team building	T			
		ecessary decisions as a l				
		skills as well as personal		well-bei	ng	
UNIT – I		Soft Skills & Commun				Hrs
Introduction, meanir	ng, significance of	f soft skills – definition,	significance, ty	pes of co	ommuni	catior
skills - Intrapersona	al & Inter-persona	al skills - Verbal and Nor	n-verbal Comm	unication	ı	
given topic. Verbal Communica negotiating- agreeing Non-verbal commu	ntion- Oral Presen g and disagreeing nication – Public	n- controversial and secu- tations- Extempore- brie with professional grace. speaking – Mock interva edy the lapses on observa	f addresses and iews – presentat	speeches	- convi	ncing
		Cuitical Thin			10	Hrs
UNIT – II	Observation	Curiosity Introspecti	0	1 Think		
mindedness – Creati		Curiosity – Introspecti	on - Analytica	u innk	ing –	Open
Activities:	ve minking					
	on and statistics	on a topic - sequencing	accorting	onconing	a orit	anin
		the root cause - seeking v				
		e Study, Story Analysis		Judging	witti iat	ionai
<u>– evaluating the view</u> UNIT – III		Problem Solving & Dec	eision Making		10	Hrs
		ng – Managing Conflict		ution	10	1115
		ve decision making in te			5	
	-	e e		-		
Activities:						
Placing a problem w		nflict of interests, choice				
Placing a problem w – exploring solution	ns by proper rea	soning - Discussion or	n important pro	ofessiona		
Placing a problem w – exploring solution	ns by proper reations and initiate d		n important pro	ofessiona		

Case Study & Group Discussion

CIVIL ENGINEERING

UNIT – IV **Emotional Intelligence & Stress Management** 10 Hrs Managing Emotions - Thinking before Reacting - Empathy for Others - Self-awareness - Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations. Providing opportunities for the participants to narrate certain crisis and stress -ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

$\mathbf{UNIT} - \mathbf{V}$	Leadership Skills	10 Hrs			
Team-Building – Decision-Making – Accountability – Planning – Public Speaking – Motivation					
Risk-Taking - Team Buildi	ng - Time Management				

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice - sense of adjustment - vision - accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership – Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra Barun K.) Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- 2. Personality Development and Soft Skills: Preparing for Tomorrow, Dr Shikha KapoorPublisher : I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- 1. Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- 3. Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: Notion Press
- 6. Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87COhELCytvXh0E_ybOO1 q
- https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsOFwJZel j2PUy0pwjVUgj7Kl 2.
- 3. https://youtu.be/-Y-R9hD17lU
- **4.** https://youtu.be/gkLsn4ddmTs
- 5. https://youtu.be/2bf9K2rRWwo
- 6. https://youtu.be/FchfE3c2jzc

Γ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

Course Code	Design Thinking for In		L	T	P	C
20A99401 Pre-requisite	(Common to All branches of Engineering)21NILSemester				0 [V	0
-		Semester		1	V	
Course Objectives:						
The objective of the	is course is to familiarize student	s with design think	ing pr	ocess	as a t	ool fo
	tion. It aims to equip students with de velop solutions for real-time problem		na igni	e the n	ninas to	o create
Course Outcomes (A	5.				
`	oncepts related to design thinking.					
	fundamentals of Design Thinking and	dinnovation				
	esign thinking techniques for solving		sectors			
	vork in a multidisciplinary environme		sectors	•		
	value of creativity					
	becific problem statements of real tin	ne issues				
1	1					
UNIT - I	Introduction to Design Thinking					Hrs
	ents and principles of Design, basics					
	Principles of design. Introduction to c	lesign thinking, histor	ry of D	esign T	hinkin	ig, Nev
materials in Industry						
Design thinking pro nventions, design th	Design Thinking Process cess (empathize, analyze, idea & p ninking in social innovations. Tools product development				ess in	
Design thinking pro inventions, design th map, brain storming, Activity: Every stud	cess (empathize, analyze, idea & p ninking in social innovations. Tools	of design thinking - tes, Every student ca	person n prese	n, costu ent desi	ess in umer, j	driving journey ocess in
inventions, design th map, brain storming, Activity: Every stud	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu	of design thinking - tes, Every student ca	person n prese	n, costu ent desi	ess in umer, ign pro elopme	driving journey ocess in
Design thinking pro inventions, design th map, brain storming, Activity: Every stud the form of flow diag UNIT - III	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu gram or flow chart etc. Every student Innovation	of design thinking - tes, Every student ca should explain abou	n prese t produ	n, costi ent desi ct deve	ess in umer, ign pro elopme	driving journey ocess in ent. Hrs
Design thinking pro inventions, design th map, brain storming, Activity: Every stud the form of flow diag <u>UNIT - III</u> Art of innovation, I	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu gram or flow chart etc. Every student	of design thinking - tes, Every student ca should explain abou creativity, role of cr	n prese t produ reativit	n, costr ent desi ct deve y and	ess in umer, ign pro elopme 8 innova	driving journey ocess in ent. Hrs ution in
Design thinking pro inventions, design th map, brain storming, Activity: Every stud the form of flow diag <u>UNIT - III</u> Art of innovation, I organizations. Creat creativity. Activity: Debate on value-based innovati	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu gram or flow chart etc. Every student Innovation Difference between innovation and ivity to Innovation. Teams for inn innovation and creativity, Flow an on.	of design thinking - tes, Every student ca should explain abou creativity, role of cr novation, Measuring	n prese t produ reativit the in	n, costr ent desi ct deve y and npact	ess in umer, elopme 8 innova and v	driving journey ocess in ent. <u>Hrs</u> ttion in alue o bate on
Design thinking pro inventions, design the map, brain storming, Activity: Every stud the form of flow diag UNIT - III Art of innovation, I organizations. Creat creativity. Activity: Debate on value-based innovati UNIT - IV	 cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minugram or flow chart etc. Every student Innovation Difference between innovation and ivity to Innovation. Teams for innovation and creativity, Flow an on. Product Design 	of design thinking - tes, Every student ca should explain abou creativity, role of co novation, Measuring d planning from ide	n prese t produ reativit the in a to in	n, costr ent desi ct deve y and npact	ess in umer, lopme lopme and v on, De	driving journey ocess in ent. Hrs ttion in alue o bate on Hrs
Design thinking pro inventions, design the map, brain storming, Activity: Every stud the form of flow diag UNIT - III Art of innovation, I organizations. Creat creativity. Activity: Debate on value-based innovati UNIT - IV Problem formation,	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu gram or flow chart etc. Every student Innovation Difference between innovation and ivity to Innovation. Teams for inn innovation and creativity, Flow an on.	of design thinking - tes, Every student ca should explain abou creativity, role of co novation, Measuring d planning from ide luct strategies, Produ	n prese t produ reativit the in a to in	n, costr ent desi ct deve y and npact	ess in umer, lopme lopme and v on, De	driving journey ocess in ent. Hrs ttion in alue o bate on Hrs
Design thinking pro inventions, design the map, brain storming, Activity: Every stud the form of flow diag UNIT - III Art of innovation, I organizations. Creat creativity. Activity: Debate on value-based innovati UNIT - IV Problem formation, product specification	 cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minugram or flow chart etc. Every student Innovation Difference between innovation and ivity to Innovation. Teams for innovation and creativity, Flow an on. Product Design introduction to product design, Product 	of design thinking - tes, Every student ca should explain abou creativity, role of cr novation, Measuring d planning from ide luct strategies, Produ n Case studies.	n prese t produ reativit the in a to in ct valu	n, costr ent desi ct deve y and npact novatic e, Proc	ess in umer, j ign pro- elopme innova and v on, De <u>8</u> luct pl	driving journey ocess in ent. Hrs ation in alue o bate on Hrs anning
Design thinking pro inventions, design the map, brain storming, Activity: Every stud the form of flow diag UNIT - III Art of innovation, I organizations. Creat creativity. Activity: Debate on value-based innovati UNIT - IV Problem formation, product specification Activity: Importance	cess (empathize, analyze, idea & p ninking in social innovations. Tools product development ent presents their idea in three minu gram or flow chart etc. Every student Innovation Difference between innovation and ivity to Innovation. Teams for im- innovation and creativity, Flow an on. Product Design introduction to product design, Prod is. Innovation towards product design	of design thinking - tes, Every student ca should explain abou creativity, role of co novation, Measuring d planning from ide luct strategies, Produ n Case studies. ons, Explaining their cesses	n prese t produ reativit the in a to in ct valu	n, costr ent dest ct deve y and npact novation e, Proc	ess in umer, j ign pro- elopme innova and v on, De luct pl design	driving journey ocess in ent. Hrs ttion in alue o bate on Hrs anning

CIVIL ENGINEERING

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

1. Change by design, Tim Brown, Harper Bollins (2009)

2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books:

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press
- 3. Universal principles of design- William lidwell, kritinaholden, Jill butter.
- 4. The era of open innovation chesbrough.H

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

CIVIL ENGINEERING

COMMUNITY SERVICE PROJECTExperiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a 6 weeks for the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc
- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty incharge.

CIVIL ENGINEERING

- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES

CIVIL ENGINEERING

BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

CIVIL ENGINEERING

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- **19. Soil protection**
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- **29.** Geographical survey
- **30.** Geological survey
- 31. Sericulture

CIVIL ENGINEERING

- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmes are;

Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction

CIVIL ENGINEERING

- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

• A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.

CIVIL ENGINEERING

- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

CIVIL ENGINEERING Course Structure (R20) – III & IV Year

		Semester-V				
S.No.	Course Code	Course Name	L	Т	Р	Credits
1.	20A01501	Design of Reinforced Concrete Structures	3	0	0	3
2.	20A01502T	Geotechnical Engineering	3	0	0	3
3.	20A01503	Building Materials and Construction	3	0	0	3
4.		Professional Elective Course – I	3	0	0	3
	20A01504a	Structural Analysis – II				
	20A01504b	Open Channel Flow				
	20A01504c	Building Construction Management				
5.		Open Elective Course – I	3	0	0	3
6.	20A01506	Computer Aided Drafting Lab	0	0	3	1.5
7.	20A01502P	Geotechnical Engineering Lab	0	0	3	1.5
8.		Skill oriented course - III	1	0	2	2
	20A01507	Building Planning and Drawing				
9.	20A01508	Evaluation of Community Service Project				1.5
		Total	I			21.5

Open l	Elective – I		
S.No.	Course Code	Course Name	Offered by the Dept.
1	20A02505	Electric Vehicles	EEE
2	20A03505	3D Printing Technology	ME
3	20A04505	Digital Electronics	ECE
4	20A05505a	Java Programming	CSE& Allied/IT
5	20A05602T	Artificial Intelligence	
6	20A12502	Mobile Application Development using Android	
7	20A27505	Computer Applications in Food Processing	FT
8	20A54501	Optimization Techniques	Mathematics
9	20A56501	Materials Characterization Techniques	Physics
1	20A51501	Chemistry of Energy Materials	Chemistry

Note:

1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.

2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.

3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline

Semester-VI						
S.No	CourseCode	Course Name	L	Т	Р	Credits
1.	20A01601	Design of Steel Structures	3	0	0	3
2.	20A01602	Highway Engineering	3	0	0	3
3.	20A01603	Hydrology and Irrigation Engineering	3	0	0	3
4.		Professional Elective Course– II	3	0	0	3
	20A01604a	Experimental Stress Analysis				
	20A01604b	Foundation Engineering				
	20A01604c	Environmental Impact Assessment				
5.		Open Elective Course – II	3	0	0	3
6.	20A01606	Design Studio Lab with STAAD Pro.	0	0	3	1.5
7.	20A01607	Highway Materials Lab	0	0	3	1.5
8.	20A01608	Concrete Technology Lab	0	0	3	1.5
9.		Skill oriented course - IV	1	0	2	2
	20A01609	BIM Fundamentals for Civil Engineers				
10.	20A99601	Noncredit mandatory Course Intellectual Property Rights & Patents	2	0	0	0
		Total				21.5
	Industry Inter	rnship (Mandatory) for 6 - 8 weeks duration duri	ng summer	vaca	tion	

Open Elective – II

S.No.	CourseCode	Course Name	Offered by the Dept.
1	20A02605	Smart Electric Grid	EEE
2	20A03605	Introduction to Robotics	ME
3	20A04605	Signal Processing	ECE
4	20A04701b	Introduction to Internet of Things	ECE/CSE
5	20A05605a	Principles of Operating Systems	
6	20A05605b	Foundations of Machine Learning	CSE& Allied/IT
7	20A05605c	Data Analytics Using R	
8	20A27605	Food Refrigeration and Cold Chain Management	FT
9	20A54701	Wavelet Transforms & its applications	Mathematics
10	20A56701	Physics Of Electronic Materials and Devices	Physics
11	20A51701	Chemistry of Polymers and its Applications	Chemistry

		Semester-VII				
S.No.	Course Code	e Course Name	L	Т	Р	Credits
1.	20A01701a 20A01701b 20A01701c	Professional Elective Course– III Finite Element Analysis Railways, Airport and Harbour Engineering Ground Improvement Techniques	3	0	0	3
2.	20A01701c 20A01702a 20A01702b 20A01702c	Professional Elective Course– IV Prestressed Concrete Hydraulic structures and WaterpowerEngineering Industrial Waste and Wastewater Management	3	0	0	3
3.	20A01703a 20A01703b 20A01703c	Professional Elective Course– V Remote Sensing and GIS Bridge Engineering Design and Drawing of Irrigation Structures	3	0	0	3
4.	20A52701a 20A52701b 20A52701c	Humanities Elective – II Entrepreneurship and Incubation Management Science Enterprise Resource Planning	3	0	0	3
5.		Open Elective Course – III	3	0	0	3
6.		Open Elective Course – IV	3	0	0	3
7.	20A01706	Skill oriented course - V Estimation, Costing and Valuation	1	0	2	2
8.	20A01707	Evaluation of Industry Internship				3
0.	201101707	Total				23
Open El	ective – III					
	Course Code C	Course Name	Off	ered by	the D	ept.
1	20A02704 I	OT Applications in Electrical Engineering	EEE			
2		roduct Design & Development		М		
3		Electronic Sensors		EC	CE	
4		Veb Technologies			11. 1/1/	T
5		YR & AR for Engineers	C	SE & A	Allied/I	1
6		oftware Engineering			.	
7		luman Nutrition		F		
8		Iumerical Methods for Engineers		Mathe		
9		ensors And Actuators for Engineering Applications		Phy		
10	20A51702 C ective – IV	hemistry of Nanomaterials and Applications		Chem	iistry	
		Course Name	Off	ered by	the D	ent
1		Renewable Energy Systems		EF		cpt.
2		ntroduction to Composite Materials	ME			
3		Microcontrollers and Applications		EC		
4		Cyber Security	C	SE & A	Allied/I	Т
5		ntroduction to Full Stack Development				
6		ndustrial IoT				
7		Waste and Effluent Management		F	Г	
8		Number theory & its applications		Mathe		
9		Smart Materials and Devices		Phy		
10	20A51703	Green Chemistry and Catalysis for Sustainable Environment		Chen		

		Semester-VIII					
S.No.	Course Code	Course Name	Category	L	Т	Р	Credits
1.	20A01801	Full Internship & Project work	PR				12
						Total	12

COURSES OFFERED FOR HONOURS DEGREE IN CIVIL ENGINEERING

S.No.	Course Code	Course Title	Contact Hours per week		Credits
			L	Т	
1	20A01H01	Soil Dynamics and Machine Foundation	3	1	4
2	20A01H02	Advanced Structural Design	3	1	4
3	20A01H03	Repair & Rehabilitation of Structures	3	1	4
4	20A01H04	Construction Economics & Finance	3	1	4
SUGGE	ESTED MOOCs		·		
5	20A01H05	Introduction to Multimodal Urban Transportation Systems https://nptel.ac.in/courses/105/105/105105204/			2
6	20A01H06	Sustainable River Basin Management https://nptel.ac.in/noc/courses/noc15/SEM2/noc1 5-ce03/			2
					20

LIST OF MINORS OFFERED TO CIVIL ENGINEERING

S.No.	Minor Title	Department offering the Minor
1.	Energy Systems	EEE
2.	3D Printing	ME
3.	Industrial Engineering	ME
4.	Internet of Things	ECE
5.	Food Science	Food Technology
6.	Artificial Intelligence & Data Science	
7.	Virtual & Augmented Reality	CSE & Allied /IT
8.	Cyber Security &Blockchain Technologies	

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C

3 0 0 3

(20A01501) DESIGN OF REINFORCED CONCRETESTRUCTURES

Course Objectives:

- To teach the students about the design of reinforced concrete beam, column, slab, footing and retaining wall.
- To enable the students to understand the various design philosophies based on both working stress and limit state methods.
- To enhance competence in design of reinforced concrete structures.
- To understand the concepts of designing reinforced cement concrete structures.
- To familiarize the students with the concepts of designing concrete mixes using different methods of proportioning and to understand the effects of various parameters

Course Outcomes:

- Classify the basic concepts of reinforced concrete analysis and design.
- Classify the behavior and various modes of failure of reinforced concrete members.
- Analyze and design various reinforced concrete members such as beams, columns, footings and slabs
- Draw the section and reinforcement details for columns using IS code provisions,
- Draw the section and reinforcement details for the footings and stair cases.

UNIT I Introduction

Concepts of Reinforced concrete Design – Introduction to Working Stress Method - Limit State method – Material Stress- Strain Curves – Safety factors – Characteristic values. Stress Block parameters – IS - 456:2000.

Beams: Limit state analysis and design of singly reinforced, doubly reinforced, T and L beam sections **UNIT II Shear and Torsion**

Limit state analysis and design of section for shear and torsion – Concept of bond, anchorage and development length, I.S. code provisions. Design examples in simply supported and continuous beams, detailing;

UNIT III Columns

Short and Long columns – Under axial loads, Uniaxial bending and biaxial bending – I S Code provisions. **UNIT IVFootings**

Different types of footings - Design of isolated, square, rectangular, circular footings

UNIT VSlabs&Staircase

Design of one-way slab, Two-way slabs and continuous slab using I.S. Coefficients, Limit state design for serviceability for deflection, cracking and IS code provision. Design of doglegged staircase.

Codes/Tables: IS 456-2000 and relevant sheets (Pertaining to columns) of SP 16 Code books to be permitted into the examinations Hall.

Textbooks:

- 1. Limit state designed of reinforced concrete by P. C. Varghese, Prentice Hall of India, NewDelhi
- 2. Structural Design and Drawing: Reinforced Concrete and Steel, Fourth Edition, N Krishna Raju, Universities Press, 2022

Reference Books:

- 1. Limit State Design of Reinforced Concrete by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, , Laxmi, Publications Pvt. Ltd., New Delhi
- 2. Fundamentals of reinforced concrete by N. C. Sinha and S. K Roy, S. Chand publishers
- 3. Design of Reinforced concrete structures by N.Subramanian, Oxford university press.
- 4. IS 456- 2000 Code of practice for Reinforced Concrete Structures.

Online Learning Resources: https://nptel.ac.in/courses/105105105

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C

(20A01502T) GEOTECHNICAL ENGINEERING

Course Objectives:

- To enable the student to find out the index properties of the soils and their classification.
- To enable the student to determine permeability of soils using various methods, and to understand the concept of seepage of water through soil
- To concept of seepage of water through soil
- To enable the students to find understand the difference between compaction and consolidation.
- To impart knowledge on shear strength and its importance

Course Outcomes:

- Carry out soil classification
- Solve any practical problems related to soil stresses permeability and seepage
- Estimate the stresses under any system of foundation loads
- Solve practical problems related to consolidation settlement and time rate of settlement
- Determine the shear strength of soil

UNIT I

INTRODUCTION: Soil formation – Soil structure – Adsorbed water – Mass- Volume relationship – Relative density. Index Properties Of Soils: Moisture Content, Specific Gravity, In-situ density, Grain size analysis – Sieve and Hydrometer methods – Consistency limits and indices – I.S. Classification of soils.

UNIT II

PERMEABILITY: Soil water – Capillary rise – flow of water through soils – Darcy's lawpermeability – Factors affecting – Laboratory determination of coefficient of permeability – Permeability of layered systems.

SEEPAGE THROUGH SOILS: Total, neutral and effective stresses –Quick sand condition – Seepage through soils – Flow nets: Characteristics and Uses.

UNIT III

STRESS DISTRIBUTION IN SOILS: Boussinesq's and Wester guard's theories for point loads and areas of different shapes – Newmark's influence chart. Compaction: Mechanism of compaction – Factors affecting – effects of compaction on soil properties. – Field compaction Equipment – Compaction control.

UNIT IV

CONSOLIDATION: Types of compressibility – Immediate Settlement, primary consolidation and secondary consolidation - Stress history of clay; e-p and e-log p curves – normally consolidated soil, over consolidated soil and under consolidated soil – pre-consolidation pressure and its determination – Terzaghi's 1-D consolidation theory – coefficient of consolidation: square root time and logarithm of time fitting methods.

UNIT V

SHEAR STRENGTH OF SOILS: Importance of shear strength – Mohr's– Coulomb Failure theories – Types of laboratory tests for strength parameters – strength tests based on drainage conditions – strength envelops – Critical void ratio –Liquefaction.

Textbooks:

- 1. Soil Mechanics and Foundation Engg. By K.R. Arora, Standard Publishers and Distributors Delhi 7th edition 2009
- 2. Geotechnical Engineering by C. Venkataramiah, New age International Pvt . Ltd, (2002).

Reference Books:

1. Soil Mechanics and Foundation by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain,

- Laxmi, publications Pvt. Ltd., New Delhi 17th edition 2017
 Geotechnical Engineering by Iqbal H.Khan, PHI publishers 4th edition.
 Basic and Applied Soil Mechanics by Gopal Ranjan & ASR Rao, New age International Pvt . Ltd, New Delhi 3rd edition 2016

Online Learning Resources:

https://nptel.ac.in/courses/105101201 https://nptel.ac.in/courses/105105185

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C 3 0 0 3

3 0 (20A01503) BUILDING MATERIALS AND CONSTRUCTION

Course Objectives:

- To teach various types of building materials their manufacturing process and utilisation in low-cost housing techniques
- To teach the functions and manufacturing process of glass and plastic materials that are commonly used in building construction
- To teach various types of thermal and acoustic insulation materials used in building construction
- To teach the functions and importance of various structural components
- To teach in detail about the materials like paints and floor finishes meant for interior works

Course Outcomes:

- Identify the alternate waste and sustainable materials for low-cost housing construction as per appropriate standards
- Understand the properties and utilisation of glass and plastic materials in building construction
- Evaluate various types of thermal and acoustic insulation materials
- Identify various structural components and their functions
- Understand the finishing works meant for flooring, roofs and walls

UNIT I

INTRODUCTION TO BUILDING MATERIALS:

Traditional &OrganicBuilding Materials – Stone – Dressing of Stones – Modern Building Materials – Bricks – Manufacturing process – Ceramic Products – Manufacturing Process – Building Materials for Low Cost Housing – Utilisation of Wastes for Alternative Building Materials –Sustainable Materials in Construction, Concepts of energy efficient building envelopes as per ECBC – National Standards.

UNIT II

GLASS:Introduction to Fenestration - Functions of Glass in Buildings – Constituents and Classification of Glass – Manufacturing Process –Properties of Glass – Common Types of Glass – Special Glass – Advantages and Disadvantages of Glass – National Standards such as ECBC.

PLASTIC: Introduction – Polymerisation – Classification of Plastics – Commonly Used Plastics – Moulding and Fabricating for Plastic Products – Applications – Advantages – Disadvantages – Intelligent Use of Plastics in Buildings – National Standards such as ECBC. **UNITIL**

INSULATING MATERILAS: Thermal Insulating Materials: Introduction – Thermal Insulation – Heat Transfer Fundamentals – Thermal Properties of Insulating Materials – Selection of Insulating Materials – Classification of Insulation materials – Reflective Insulation Systems – Commonly Used Building Insulation Materials – Insulation that Should not be Used – National Standards such as ECBC.

Sound Insulating Materials: Introduction – Basics of Acoustics – Sound Absorption or Insulation – Green Insulation – Cool Roof, Green Roof, Power Roof – National Standards such as ECBC. **UNIT IV**

STRUCTURAL COMPONENTS: Foundations – classification of Foundations – consideration in selection of foundation types–Masonry – Brick and block walls – Cavity walls – Damp–proof courses and membranes – Mortars – Arches and openings – Windows – Glass and glazing –Doors – Stairs – Types and Applications – Cladding to external walls – Flat roofs – Dormer windows – Formwork & Scaffolding – Precast concrete frames – Portal frames – Types – components – Framed structures – components – construction Procedure – Panel walls – National Standards such as ECBC

UNIT V

INTERNAL CONSTRUCTION AND FINISHES: Internal elements – Internal walls – Construction joints – Internal walls, fire protection –separating walls – Partitions – Plasters and plastering – Domestic floors and finishes – Sound insulation – Timber, concrete and metal stairs–Internal doors – Door sets – Fire resisting doors – Plasterboard ceilings – Suspended ceilings –Paints and painting – Components of Paints – Types of Paint – Considerations in Selecting Paints – Cement Paints – Oil Paints –Emulsion Paints – Whitewash and Colourwash – Application of Paints – Distempers – Varnishes – Safety –Joinery production – Composite boarding – National Standards such as ECBC

Textbooks:

- 1. Building Materials by M.L.Gambhir, TMH Pubilishers 2017 edition
- 2. Building material by S K Duggal New Age International Publishers; Fifth Edition
- 3. Building Construction by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delhi 11th edition
- 4. A Textbook on building construction by S.K.Sharma, S.ChandPubilishers 2016 edition

Reference Books:

- 1. Building construction by W.B.Mckay, Vol. I, II, III & IV Pearson Publications, 2013 edition.
- 2. Building materials by S.C.Rangawala, CharotarPubilishing House, Anand- India.
- 3. Building Construction by S.C.Rangawala, CharotarPubilishing House, Anand- India
- 4. Building Construction by P.C. Varghese, Prentice-Hall of India private Ltd, New Delhi.
- 5. ECBC (Energy Conservation Building Code).BEE (Bureau of Energy Efficiency) Manuals on Energy efficient building envelope concepts.

Online Learning Resources:

https://nptel.ac.in/courses/105102088

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C

(20A01504a) STRUCTURAL ANALYSIS – II (Professional Elective Course – I)

Course Objectives:

- Ability the behaviour of arches and their methods of analysis
- To ability various classical methods for analysis of indeterminate structures
- Ability to analyse the beam and frames for vertical and horizontal loads and draw SFD and BMD
- To ability the effect of support settlements for indeterminate structures. Able to calculate forces in members of truss due to load by stiffness method.
- Ability to analyse and perform plastic analysis on various structural elements.

Course Outcomes:

- To demonstrate the behaviour of arches and their methods of analysis
- To use various classical methods for analysis of indeterminate structures
- Ability to analyse the beam and frames for vertical and horizontal loads and draw SFD and BMD
- To determine the effect of support settlements for indeterminate structures. Able to
- Calculate forces in members of truss due to load by stiffness method.
- Ability to analyse and perform plastic analysis on various structural elements.

UNIT I

MOMENT DISTRIBUTION METHOD FOR FRAMES: Analysis of single bay single storey portal frame including side sway –Substitute frame analysis by two cycle method.

UNIT II

KANI'S METHOD: Analysis of continuous beams with and without settlement of supports -Single Bay single storey portal frames with and without side sway.

UNIT III

FLEXIBILITY METHOD: Flexibility methods- Introduction- Application to continuous beams including support settlements-Analysis of Single Bay single storey portal frames without and with side sway.

UNIT IV

STIFFNESS METHOD: Stiffness methods- Introduction-application to continuous beams including support settlements- Analysis of Single Bay single storey portal frames without and with side sway.

UNIT V

CONJUGATE BEAM METHOD: Real beam and conjugate beam, conjugate beam theorems, Analysis of determinate beams of with uniform and variable cross sections using conjugate beam method.

Textbooks:

- 1. Analysis of structures by Vazrani&Ratwani Khanna Publications.
- 2. Theory of structures by Ramamuratam, jain book depot, New Delhi 9th edition 2015

Reference Books:

- 1. Strength of materials by R.K Bansal, Lakshmi Publications
- 2. Strength of materials by S.S Bhavikatti, Vikas Publishing house
- 3. Structural Analysis: A Unified Approach, by D S Prakash Rao, Universities Press
- 4. Structural analysis by R.S.Khurmi, S.Chand Publications, New Delhi 2020 edition
- 5. Basic Structural Analysis by K.U.Muthu*et al.*,I.K.International Publishing House Pvt.Ltd 3rd edition 2017
- 6. Theory of Structures by Gupta S P, G S Pundit and R Gupta, Vol II, Tata McGrawHillPublications company Ltd.

Online Learning Resources: https://nptel.ac.in/courses/105105166, https://nptel.ac.in/courses/105101085

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C

(20A01504b) OPEN CHANNEL FLOW (Professional Elective Course – I)

Course Objectives:

- To introduce the importance of study of open channel flow, to give brief description on different types of flows and channels and hydraulic design principles of channels.
- To learn the fundamentals of Uniform and Non-Uniform flow in open channels.
- To understand about the concepts of specific energy, critical flow and their applications.
- To give an idea about the gradually varied flow and rapidly varied flow and their equations and computations.
- Apply dimensional analysis to predict formulas which connect particular variables in given circumstances

Course Outcomes:

By the end of the course open channel flow, the students will be able to

- Know the different types of flows and channels.
- Efficient in knowledge on the different hydraulics properties involved in open channel flow
- Understand the Gradually and Rapidly flow and its applications.
- Understand the flow in open channels, Depth energy relationship, Specific energy, Specific force, and Specific discharge
- Carry out the applications of dimensional and model analysis and basics of model studies and its applications

UNIT I

Uniform Flow in Open Channels & Compound Channels: Specific energy, Critical flow, Channel transitions, Uniform flow formulae, Best hydraulic sections.

UNIT II

Steady Gradually Varied Flow: Non- uniform flow in open channels, Gradually varied flow equations, Type of GVF profiles, Computation of GVF profiles.

UNIT III

Steady Rapidly Varied Flow: Hydraulic jump in a horizontal rectangular channel, Specific force, Computation of energy loss.

UNIT IV

Unsteady Flow: Celerity of a gravity wave, Monoclonal rising wave, Positive and negative surges, St. Venant's equations, Method of characteristics, Hydraulic routing.

UNIT V

Hydraulic Similitude: Review of dimensional analysis, Similarity laws, and Model studies

Textbooks:

- 1. Flow in Open Channels, Subramanya K., Tata McGraw Hill Pub., N Delhi2015
- 2. Flow through Open Channels, Rajesh Srivastava, Oxford Univ. Press. N Delhi, 2011
- 3. Open Channel Hydraulics, Chow, V.T., McGrawHillInc.NYork, 1979

Reference Books:

- 1. Open Channel Hydraulics, French, R.H., McGraw Hill PubCo., NYork, 1986
- 2. Open Channel Hydraulics, Terry Sturm, Tata McGraw Hill Pub. N Delhi, 2011

Online Learning Resources:

1.https://nptel.ac.in/courses/105/106/105106114/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-I Sem L T P C 3 0 0 3

(20A01504c) BUILDING CONSTRUCTION MANAGEMENT (Professional Elective Course – I)

Course Objectives:

- To make the student familiar with various construction activities, preparing construction schedule and maintaining documents and records of those activities
- To teach the students about various terms and technologies involved in earthwork of construction activities
- To make the students familiar with concepts involved in project management like bar charts and milestone charts
- To teach the students various elements of a network diagram like event, activity and dummy and their importance in network diagrams
- To teach the students the concepts of time estimates involved in CPM and PERT, float and slack, critical path calculations

Course Outcomes:

- Identify the various construction activities like preparing construction schedule and maintaining documents and records of those activities
- Understand the concepts and techniques involved in earthwork activities
- Understand the steps involved in developing a project scheduling and management and the application of bar charts and milestone charts
- Understand the various elements of a network diagram like event, activity and dummy
- Understand the concepts of calculation of time estimates of CPM and PERT

UNIT I

FUNDAMENTALS OF CONSTRUCTION TECHNOLOGY:Definitions and Discussion – Construction Activities –Construction Processes -Construction Works – Construction Estimating – Construction Schedule – Productivity and Mechanized Construction – Construction Documents – Construction Records – Quality – Safety – Codes and Regulations.

PREPARATORY WORK AND IMPLEMENTATION:

Site layout – Infrastructure Development – Construction Methods – Construction Materials – Deployment of Construction Equipment – Prefabrication in Construction – Falsework and Temporary Works.

UNIT II

EARTHWORK: Classification of Soils – Project Site – Development – Setting Out - Mechanized Excavation – Groundwater Control – Trenchless (No-dig) Technology – Grading – Dredging.Rock Excavation – Basic Mechanics of Breakage – Blasting Theory – Drillability of Rocks – Kinds of Drilling – Selection of the Drilling Method and Equipment – Explosives – Blasting Patterns and Firing Sequence – Smooth Blasting – Environmental Effect of Blasting

UNIT III

PROJECT MANAGEMENT AND BAR CHARTS AND MILESTONE CHARTS:Introduction – Project planning – Scheduling – Controlling – Role of decision in project management – Techniques for analyzing alternatives Operation research – Methods of planning and programming problems – Development of bar chart – Illustrative examples – Shortcomings of bar charts and remedial measures – Milestone charts – Development of PERT network problems.

UNIT IV

ELEMENTS OF NETWORK AND DEVELOPMENT OF NETWORK: Introduction – Event – Activity – Dummy – Network rules – Graphical guidelines for network – Common partial situations in network – Numbering the events – Cycles Problems – Planning for network construction – Modes of network construction – Steps in development of network – Work breakdown structure – Hierarchies – Illustrative examples – Problems

UNIT V

PERT AND CPM: TIME COMPUTATIONS & NETWORK ANALYSIS: Introduction – Uncertainties : Use of PERT – Time estimates – Frequency distribution – Mean, variance and standard deviation – Probability distribution – Beta distribution – Expected time Problems -Earliest expected time – Formulation for T_E - Latest allowable occurrence time – Formulation for T_L - Combined tabular computations for T_E and T_L problems. Introduction - Slack – Critical path – Illustrative examples – Probability of meeting scheduled date Problems – CPM : process – CPM : Networks – Activity time estimate – Earliest event time – Latest allowable occurrence time – Combined tabular computations for T_E and T_L - Start and finish times of activity – Float – Critical activities and critical path – Illustrative examples Problems.

Textbooks:

- 1. Construction project management by Jha ,Pearson publications, New Delhi 2nd Edition 2015
- 2. Construction Technology by SubirK.Sarkar and SubhajitSaraswati Oxford Higher Education-Univ. Press, Delhi 2008 edition
- 3. Project Planning and Control with PERT and CPM by Dr.B.C.Punmia, K.K.Khandelwal, Lakshmi Publications New Delhi 2022 edition

Reference Books:

- 1. Optimal design of water distribution networks P.R.Bhave, Narosa Publishing house 2003.
- 2. Total Project management, the Indian context- by : P.K.JOY- Mac Millan Publishers India Limited.

Online Learning Resources:

0 0 3 1.5

(20A01506) COMPUTER AIDED DRAFTING LAB

Course Objectives:

- Introduces Autodesk's AutoCAD software as a design and drafting tool.
- Provide lectures using AutoCAD software, demonstrating commands via user interface and typed commands.
- Demonstrate AutoCAD commands and workflow through lecture and videos
- Create, manipulate and edit 2D drawings and figure
- Convert 3D solid models into 2D drawing-different views, sections

Course Outcomes (CO):

- Achieve skill sets to prepare computer aided engineering drawings
- Utilize the power and precision of AutoCAD as a drafting and design tool
- Apply basic CAD concepts to develop and construct accurate 2D geometry through creation of basic geometric constructions
- A student will know what is plan and how it should be drawn in auto CAD software.
- Able to Convert 3D solid models into 2D drawing-different views, sections

LIST OF EXPERIMENTS:

- 1. Introduction to computer aided drafting
- 2. Software for CAD Introduction to different software's
- 3. Practice exercises on CAD software
- 4. Detailing of Building Components using CAD Software.
- 5. Drawing of Line diagram of Residential Building Using CAD software.
- 6. Drawing of Plan, Section & Elevation for Residential Buildings Using CAD Software.
- 7. Drawing Line diagram for Multi Storey Residential Buildings.
- 8. Drawing of Plan, Section & Elevation for Residential Multi Storey Buildings Using CAD Software.
- 9. Drawing of Plan, Section & Elevation for Hospital Building Using CAD Software.
- 10. Drawing of Plan, Section & Elevation for Industrial Buildings Using CAD Software.

Textbooks:

Engineering graphics with Auto CAD - R.B. Choudary, Anuradha Publishes

0 0 31.5

(20A01502P) GEOTECHNICAL ENGINEERING LAB

Course Objectives:

- The object of the course is to enable the students to know the various characteristics of soils
- To carry out laboratory tests and to identify soil as per IS codal procedures
- To perform laboratory tests to determine index properties of soil
- To perform tests to determine shear strength
- To perform consolidation test to determine the characteristics of soils

Course Outcomes:

At the end of the course, the student must be able to:

- Identify various soils based on their characteristics.
- Evaluate permeability and seepage of soils.
- Determine plasticity characteristics of various soils.
- To perform tests to determine shear strength
- Understand the consolidation process and thereby predicting the settlement of soils.

LABORATORY EXPERIMENTS

- 1. Specific gravity
- 2. Grain size analysis by sieving
- 3. Field density-Core cutter and Sand replacement methods
- 4. Atterberg's Limits.
- 5. Proctor Compaction test
- 6. Permeability of soil Constant and Variable head tests
- 7. CBR Test
- 8. Direct Shear test
- 9. Unconfined Compression test
- 10. Triaxial Compression test (UU Test)
- 11. Differential free swell (DFS)
- 12. Hydrometer Analysis Test (Demonstration)
- 13. Consolidation test (Demonstration)
- 14. Vane Shear test

Textbooks:

- 1. Soil Mechanics and Foundation Engg by K. R. Arora, Standard Publishers and Distributors, Delhi 7th edition 2009.
- 2. Geotechnical Engineering by C. Venkataramiah, New age International Pvt . Ltd, (2002).

Reference Books:

- 1. Soil Mechanics and Foundation by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Laxmi publications Pvt. Ltd., New Delhi 17th edition 2017.
- 2. Basic and Applied Soil Mechanics by Gopal Ranjan & A. S. R. Rao, New age International Pvt . Ltd, New Delhi 3rd edition 2016.
- 3. Principles of Geotechnical Engineering by Braja M. Das Cengage Learning

0 0 3 1.5

(20A01507) BUILDING PLANNING AND DRAWING (Skill Oriented Course – III)

Course Objectives:

- Giving training exercises on various signs and bonds and different building units
- Imparting the skills and methods of planning of various buildings.
- Imparting the planning aspects of residential buildings and public buildings.
- Initiating the student to different building bye-laws and regulations
- Prepare line plans of residential and public buildings using principles of planning.

Course Outcomes (CO):

- To impart the practical knowledge in detailing and drawing of various components of building and Different types of Buildings.
- Interpret the symbols, signs and conventions from the given drawing.
- The student should be able to distinguish the relation between the plan, elevation and cross section and identify the form and functions among the buildings.
- The student is expected to learn the skills of drawing building elements and plan various types of buildings as per requirements.
- Student should be able to plan various buildings as per the building by-laws.

LIST OF EXERCISES

- 1. Detailing & Drawing of Sign Conventions.
- 2. Detailing & Drawing of English Bond.
- 3. Detailing & Drawing of Flemish Bond.
- 4. Detailing & Drawing of Doors.
- 5. Detailing & Drawing of Windows.
- 6. Detailing & Drawing of Ventilators & Roofs.
- 7. Drawing of Line Diagram of Residential Buildings by using Building Bye- Laws.
- 8. Drawing of Plan, Elevation & Section from line diagram for a single Storey Building.
- 9. Drawing of Plan, Elevation & Section for Hospital Building.

10. Drawing of Plan, Elevation & Section for Industrial Building.

Textbooks:

- 1. Planning and Designing and Scheduling Gurucharan Singh and Jagadish Singh- Standard publishers 2020 edition
- 2. Building Planning and Design N.Kumara Swamy and A.Kameswara Rao. Charotar publications 9th edition 2019

Reference Books:

- 1. Building by laws by state and Central Governments and Municipal corporations. National Building Code
- 2. Building drawing with an integrated approach to building environment M.G.Saha, G.M.Kale, S.Y.patki-Tata Mc Graw Hill

Online Learning Resources:

https://www.studocu.com/row/document/jamaa%D8%A9-byrzyt/building-construction/lecture-notestypes-of-drawings-building-construction-aa-20152016/790450

1 1 1 C 3 0 0 3

(20A01601) DESIGN OF STEEL STRUCTURES

Course Objectives:

- To introduce steel structures and its basic components
- To introduce structural steel fasteners like welding and bolting
- To teach design tension members, compression members, beams and beam-columns
- To teach design column splices and bases
- To teach design of various steel structures.

Course Outcomes:

- Learn the basic elements of a steel structure
- Learn the fundamentals of structural steel fasteners
- Able to design basic elements of steel structure like tension members, compression members, beams and beam-columns
- Able to design column splices and bases.
- Able to design the various steel structures.

UNIT I

Concepts of Plasticity, Yield strength of steel. Loads and combinations, wind loads on roof trusses, Concept of limit State Design of steel structures – Different Limit States as per IS 800 -2007 – Design Strengths- Deflection limits – Serviceability - Bolted connections – Welded connections – Design Strength – Efficiency of joint – Prying action Types of Welded joints - Design of Tension members

UNIT II

Design of Steel Compression members – Buckling class – slenderness ratio / strength design – Laced – Battened columns – Design of Column bases – Slab base only.

UNIT III

Design of Beams – Plastic moment – Bending and shear strength, design of laterally supported beams – Built up sections – Large plates Web buckling, Crippling and Deflection of beams

UNIT IV

Design of eccentric connections with brackets, Beam end connections – Web angle – Un-stiffened and stiffened seated connections (bolted and Welded types) Design of truss joints

UNIT V

Plate Girder: Design consideration – I S Code recommendations - Design of welded plate girder – Curtailment of flange plates- stiffeners.

Textbooks:

- Limit state design of Steel Structures by Subramanyam.N, Oxford University press, New Delhi 2nd edition 2018
- 2. Limit State Design of steel structures by S.K. Duggal, Tata Mcgraw Hill, New Delhi 3rd edition 2019

Reference Books:

- 1. Structural Design and Drawing by N.Krishna Raju, University Press, Hyderabad 3rd edition 2009
- 2. Structural design in steel by Sarwar Alam Raz, New Age International Publishers, New Delhi
- 3. Design of Steel Structures by Edwin Gaylord, Charles Gaylord, James Stallmeyer, Tata Mc. Graw-Hill, New Delhi.

Codes/Tables: IS Codes:

- 1) IS -800 2007
- 2) IS 875 Part III
- 3) Steel Tables.
- 4) Railway Design Standards Codeandsteel tables to be permitted into the examination hall.

3 0 0 3

(20A01602) HIGHWAY ENGINEERING

Course Objectives:

- To make the student understand the importance of Highway Development in Social and Economic Development of a Nation
- To impart the concepts of Geometric Design of various Highway Infrastructure elements like Superelevation, Sight Distances, Radius of Curve, Extra widening etc
- To make the student aware of Basic Traffic Parameters and Surveys needed for collecting data about them
- To make the student understand the need for Management of Traffic in Urban areas and the measures available
- To familiarize the students with types of Road Intersections and their design elements

Course Outcomes:

- Understand the importance of Highway Development in Social and Economic Development of a Nation
- Understand the concepts of Geometric Design of various Highway Infrastructure elements like Superelevation, Sight Distances, Radius of Curve, Extra widening etc
- Understanding Basic Traffic Parameters and Surveys needed for Collecting Data about them
- Understand the need for Management of Traffic in Urban areas and the measures available
- Familiar with types of Road Intersections and their design elements

UNIT I

HIGHWAY DEVELOPMENT AND PLANNING

Highway development in India – Necessity for Highway Planning- Different Road Development Plans- Classification of Roads- Road Network Patterns – Highway Alignment- Factors affecting Alignment- Engineering Surveys – Drawings and Reports.

UNIT II

HIGHWAY GEOMETRIC DESIGN

Importance of Geometric Design- Design controls and Criteria- Highway Cross Section Elements-Sight Distance Elements- Stopping sight Distance, Overtaking Sight Distance and intermediate Sight Distance- Design of Horizontal Alignment- Design of Super elevation and Extra widening- Design of Transition Curves-Design of Vertical alignment-Gradients- Vertical curves.

UNIT III

TRAFFIC ENGINEERING STUDIES

Basic Parameters of Traffic-Volume, Speed and Density – Definitions and their inter relation – Highway capacity and level of service concept – factors affecting capacity and level of service - Traffic Volume Studies- Data Collection and Presentation-Speed studies- Data Collection and Presentation-Parking Studies and Parking characteristics- Road Accidents-Causes and Preventive measures- Accident Data Recording – Condition Diagram and Collision Diagrams.

TRAFFIC REGULATION AND MANAGEMENT:

Road Traffic Signs – Types and Specifications – Road markings-Need for Road Markings-Types of Road Markings- Specifications - Design of Traffic Signals –Webster Method –Saturation flow – phasing and timing diagrams – Numerical problems.

UNIT IV

INTERSECTION DESIGN

Conflicts at Intersections- Channelization: Objectives –Traffic Islands and Design criteria- Types of At-Grade Intersections – Types of Grade Separated Intersections- Rotary Intersection – Concept of Rotary and Design Criteria- Advantages and Disadvantages of Rotary Intersection.

UNIT V PAVEMENT DESIGN

Types of pavements – Difference between flexible and rigid pavements – Pavement Components – Sub grade, Sub base, base and wearing course – Functions of pavement components – Design Factors – Flexible pavement Design methods – G.I method, CBR Method, (as per IRC 37-2002) – Design of Rigid pavements – Critical load positions - Westergaard's stress equations – computing Radius of Relative stiffness and equivalent radius of resisting section – stresses in rigid pavements – Design of Expansion and contraction joints in CC pavements. Design of Dowel bars and Tie bars.

Textbooks:

- 1. Highway Engineering S.K.Khanna&C.E.G.Justo, Nemchand& Bros., 7th edition (2000).
- 2. Traffic Engineering and Transportation Planning by L.R.Kadiyali and Lal- Khanna Publications 9th edition

Reference Books:

- 1. Transportation Engineering, R Srinivas Kumar, Universities Press, 2020
- 2. Highway Engineering Dr.S.K.Sharma, S.Chand Publishers 2014 edition
- 3. Transportation Engineering, Volume I, C Venkatramaiah, Universities Press, 2015
- 4. Pavement Design, R Srinivasa Kumar, Universities Press, 2013

Online Learning Resources:

https://nptel.ac.in/courses/105105107 https://nptel.ac.in/courses/105107123

(20A01603) HYDROLOGY AND IRRIGATION ENGINEERING

Course Objectives:

- Introduce the types of irrigation systems and introduce the concepts of planning and design of irrigation systems
- Understand design methods of erodible and non-erodible canals
- Know the principles of design of hydraulic structures on permeable foundations
- Know the concepts for analysis and design principles of storage and diversion works.
- Learn design principles of canal structures

Course Outcomes:

- Design various channel systems
- Design head and cross regulator structures and also Identify various types of reservoir and their design aspects.
- By the Establishes the understanding of cross drainage works and its design.
- Students understood all type of dams and reservoirs and their designs
- Students understood Spillways, Gates & Energy dissipaters.

UNIT I

INTRODUCTION TO HYDROLOGY: Engineering hydrology and its applications; Hydrologic cycle; precipitation- Types and forms, rainfall measurement, types of rain gauges, computation of average rainfall over a basin, presentation and interpretation of rainfall data.

DESCRIPTIVE HYDROLOGY:Evaporation- Factors affecting evaporation, measurement of evaporation; Infiltration- Factors affecting infiltration, measurement of infiltration, infiltration indices; Run off- Factors affecting run- off, Computation of run-off; Design Flood; Estimation of maximum rate of run-off; separation of base flow.

UNIT II

HYDROGRAPH ANALYSIS: Hydrograph; Unit Hydrograph- Construction and limitations of Unit hydrograph, Application of the unit hydrograph to the construction of a flood hydrograph resulting from rainfall of unit duration; S-hydrograph.

GROUND WATER: Introduction; Aquifer; Aquiclude; Aquifuge; aquifer parameters- porosity, Specific yield, Specific retention; Divisions of sub–surface water; Water table; Types of aquifers; storage coefficient-coefficient of permeability and transmissibility

UNIT III

IRRIGATION: Introduction; Necessity and Importance of Irrigation; advantages and ill effects of Irrigation; types of Irrigation; methods of application of Irrigation water; quality for Irrigation water. Duty and delta; duty at various places; relation between duty and delta; factors affecting duty; methods of improving duty.

WATER REQUIREMENT OF CROPS: Types of soils, Indian agricultural soils, preparation of land for Irrigation; soil fertility; Soil-water-plant relationship; vertical distribution of soil moisture; soil moisture tension; soil moisture stress; various soil moisture constants; Limiting soil moisture conditions; Depth and frequency of irrigation; Gross command area; Culturable command area; Culturable cultivated and uncultivated area; Kor depth and Kor period; crop seasons and crop rotation; Irrigation efficiencies; Determination of irrigation requirements of crops; Assessment of Irrigation water. Consumptive use of water-factors affecting consumptive use, direct measurement and determination by use of equations (theory only)

UNIT IV

CHANNELS – **SILT THEORIES:** Classification; Canal alignment; Inundation canals; Crosssection of an irrigation channel; Balancing depth; Borrow pit; Spoil bank; Land width; Silt theories– Kennedy's theory, Kennedy's method of channel design; Drawbacks in Kennedy's theory; Lacey's regime theory- Lacey's theory applied to channel design; Defects in Lacey's theory; Comparison of Kennedy's and Lacey's theory.

WATER LOGGING AND CANAL LINING: Water logging; Effects of water logging; Causes of water logging; Remedial measures; Saline and alkaline soils and their reclamation; Losses in canal; Lining of irrigation channels – Necessity, advantages and disadvantages; Types of lining; Design of lined canal.

UNIT V

DIVERSION HEAD WORKS: Types of diversion head works; Diversion and Storage head works; weirs and barrages; Layouts of diversion head works; components; Causes and failure of hydraulic structures on permeable foundations; Blighs creep theory; Khoslas theory; Determination of uplift pressure, impervious floors using Blighs and Khoslas theory; Exit gradient.

Textbooks:

- 1. Irrigation and water power engineering by Punmia& Lal, Laxmi publications pvt. Ltd., New Delhi 17th edition 2021
- 2. Engineering Hydrology by K. Subramanya, The Tata Mcgraw Hill Company, Delhi 5th edition 2020

Reference Books:

- 1. Irrigation Engineering and Hydraulic structures by S. K. Garg; Khanna Publishers, Delhi 36th edition
- Engineering Hydrology by Jayarami Reddy, Laxmi publications pvt. Ltd., New Delhi 3rd edition 2016
- 3. Irrigation and Water Resources & Water Power by P.N.Modi, Standard Book House 6th edition 2020

Online Learning Resources:

3 0 0 3

(20A01604a) EXPERIMENTAL STRESS ANALYSIS (Professional Elective Course-II)

Course Objectives:

- To understand different methods of experimental stress analysis
- To understand the use of strain gauges for measurement of strain
- To be exposed to different Nondestructive methods of concrete
- To understand the theory of photo elasticity and its applications in analysis of structures
- To understand different methods of photo elasticity

Course Outcomes:

- Understand different methods of experimental stress analysis
- Understand the use of strain gauges for measurement of strain
- Expose to different Nondestructive methods of concrete
- Understand the theory of photo elasticity and its applications in analysis of structures
- Understand different methods of photo elasticity

UNIT IPRINCIPLES OF EXPERIMENTAL APPROACH

Merits of Experimental Analysis Introduction, uses of experimental stress analysis, Advantages of experimental stress analysis, Different methods –Simplification of problems.

UNIT IISTRAIN MEASUREMENT USING STRAIN GAUGES

Definition of strain and its relation of experimental Determinations Properties of Strain-

Gauge Systems-Types of Strain Gauges –Mechanical, Acoustic and Optical Strain Gauges. Introduction to Electrical strain gauges - Inductance strain gauges – LVDT – Resistance strain gauges – Various types –Gauge factor – Materials of adhesion base.

UNIT IIISTRAIN ROSSETTES AND NON - DESTRUCTIVE TESTING OF CONCRETE

Introduction – The three elements Rectangular Rosette – The Delta Rosette Corrections for Transverse Strain Gauge.

Ultrasonic Pulse Velocity method –Application to Concrete. Hammer Test – Application to Concrete.

UNIT IVTHEORY OF PHOTOELASTICITY

Introduction – Temporary Double refraction – The stress Optic Law –Effects of stressed model in a polar scope for various arrangements – Fringe Sharpening. Brewster's Stress Optic law.

UNIT VTWO-DIMENSIONAL PHOTOELASTICITY

Introduction – Isochramic Fringe patterns- Isoclinic Fringe patterns passage of light through plane Polariscope and Circular polariscope Isoclinic Fringe patterns – Compensation techniques – Calibration methods – Separation methods – Scaling Model to prototype Stresses – Materials for photo – Elasticity Properties of Photoelastic Materials.

Textbooks:

1.Experimental stress analysis by J.W.Dally and W.F.Riley, <u>College House Enterprises</u>2005

2. Experimental stress analysis by Dr.SadhuSingh.khanna Publishers 4th edition

Reference Books:

- 1. Experimental Stress analysis by U.C.Jindal, Pearson Pubilications 2012 edition
- 2. Experimental Stress Analysis by L.S.Srinath, MC.Graw Hill Company Publishers.

Online Learning Resources:

L I P C 3 0 0 3

(20A01604b) FOUNDATION ENGINEERING (Professional Elective Course-II)

Course Objectives:

- To enable the student to determine different soil exploration techniques.
- To enable the student to determine the earth slope stability.
- To enable the student to estimate earth pressure using various theories.
- To enable the student to estimate the contact pressure distribution below shallow footing and allowable bearing pressure.
- To enable the student to analyze the load carrying capacity of pile foundation and well foundation.

Course Outcomes:

- Able to understand different soil exploration techniques.
- Able to analyze the earth slope stability.
- Able to estimate earth pressure using various theories.
- Able to estimate the contact pressure distribution below shallow footing and allowable bearing pressure.
- Able to analyze the load carrying capacity of pile foundation and well foundation.

UNIT I

SOIL EXPLORATION: Need – Methods of soil exploration – Boring and Sampling methods – Field tests – Penetration Tests – Plate load test – Pressure meter – Planning of Programme and preparation of soil investigation report.

UNIT II

EARTH SLOPE STABILITY: Infinite and finite earth slopes – Types of failures – Factor of safety of infinite slopes – Stability analysis by Swedish arc method, standard method of slices, Bishop's Simplified method – Taylor's Stability Number- Stability of slopes of earth dams under different conditions.

UNIT III

EARTH PRESSURE THEORIES: Rankine's theory of earth pressure – Earth pressures in layered soils – Coulomb's earth pressure theory – Rebhann's and Cullman's graphical method **RETAINING WALLS:** Types of retaining walls – stability of retaining walls.

UNIT IV

SHALLOW FOUNDATIONS: Types – choice of foundation – Location of depth – Safe Bearing Capacity – Terzaghi's, Meyerhoff's and Skempton's Methods

ALLOWABLE BEARING PRESSURE: Safe bearing pressure based on N- value – Allowable bearing pressure; safe bearing capacity and settlement from plate load test – Allowable settlements of structures – Settlement Analysis

UNIT V

PILE FOUNDATION: Types of piles – Load carrying capacity of piles based on static pile formulae – Dynamic pile formulae – Pile load tests – Load carrying capacity of pile groups in sands and clays – Settlement of pile groups.

WELL FOUNDATIONS: Types – Different shapes of wells – Components of wells – functions and Design Criteria – Sinking of wells – Tilts and shifts.

Textbooks:

- 1. Geotechnical Engineering by C.Venkataramaiah, New Age Pubilications(2002).
- 2. Soil Mechanics and Foundation Engineering by Arora, Standard Publishers and Distributors, Delhi 7th edition 2009
- 3. Soil Mechanics and Foundations by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain,

Laxmi publications Pvt. Ltd., New Delhi 17th edition 2017

Reference Books:

- 1. Soil Mechanics and Foundation Engineering by Purushtoma Raj, Pearson Pubilications 2nd edition 2013
- 2. Principles of Foundation Engineering by Das, B.M., (1999)–6th edition (Indian edition) Thomson Engineering
- 3. Foundation Engineering by Varghese, P.C., Prentice Hall of India., New Delhi.
- 4. Foundation Engineering by V.N.S.Murthy, CRC Press, New Delhi.
- 5. Foundation Analysis and Design by Bowles, J.E., (1988)– 4th Edition, McGraw-Hill Publishing company, Newyork.
- 6. Geotechnical Engineering by Manoj Dutta & Gulati S.K Tata Mc.Grawhill Publishers New Delhi.

Online Learning Resources:

3 0 0 3

(20A01604c) ENVIRONMENTAL IMPACT ASSESSMENT (Professional Elective Course-II)

Course Objectives:

- To impart knowledge on different concepts of Environmental Impact Assessment.
- To teach procedures of risk assessment.
- To teach the EIA methodologies and the criterion for selection of EIA methods.
- To teach the procedures for environmental clearances and audit.
- To know the impact quantification of various projects on the environment.

Course Outcomes:

- To prepare EMP, EIS, and EIA report.
- To identify the risks and impacts of a project.
- To choose an appropriate EIA methodology.
- To evaluation the EIA report.
- To Estimate the cost benefit ratio of a project.

UNIT IConcepts and methodologies of EIA

Initial environmental Examination, Elements of EIA, - Factors affecting E-I-A Impact evaluation and analysis, preparation of Environmental Base map, Classification of environmental parameters-Criteria for the selection of EIA Methodology, E I A methods, Ad-hoc methods, matrix methods, Network method Environmental Media Quality Index method, overlay methods and cost/benefit Analysis.

UNIT IIImpact of Developmental Activities and Land Use

Introduction and Methodology for the assessment of soil and ground water, Delineation of study area, Identification of actives. Procurement of relevant soil quality, Impact prediction, Assessment of Impact significance, Identification and Incorporation of mitigation measures. E I A in surface water, Air and Biological environment: Methodology for the assessment of Impacts on surface water environment, Air pollution sources, Generalized approach for assessment of Air pollution Impact.

UNIT IIIAssessment of Impact on Vegetation, Wildlife and Risk Assessment

Introduction - Assessment of Impact of development Activities on Vegetation and wildlife, environmental Impact of Deforestation – Causes and effects of deforestation - Risk assessment and treatment of uncertainty-key stages in performing an Environmental Risk Assessment-Advantages of Environmental Risk Assessment

UNIT IVEnvironmental Audit

Introduction - Environmental Audit & Environmental legislation objectives of Environmental Audit, Types of environmental Audit, Audit protocol, stages of Environmental Audit, onsite activities, evaluation of Audit data and preparation of Audit report.

UNIT VEnvironmental Acts and Notifications

The Environmental protection Act, The water preservation Act, The Air (Prevention & Control of pollution Act), Wild life Act - Provisions in the EIA notification, procedure for environmental clearance, procedure for conducting environmental impact assessment report- Evaluation of EIA report. Environmental legislation objectives, evaluation of Audit data and preparation of Audit report. Post Audit activities, Concept of ISO and ISO 14000.

Textbooks:

- 1. Environmental Impact Assessment, by Canter Larry W., McGraw-Hill education Edi (1996)
- Environmental Impact Assessment Methodologies, by Y. Anjaneyulu, B. S. Publication, Hyderabad 2nd edition 2011

Reference Books:

- 1. Environmental Engineering, by Peavy, H. S, Rowe, D. R, Tchobanoglous, G.Mc-Graw Hill International Editions, New York 1985
- 2. Environmental Science and Engineering, by J. Glynn and Gary W. Hein Ke, Prentice Hall Publishers
- 3. Environmental Science and Engineering, by Suresh K. Dhaneja, S.K., Katania& Sons Publication, ND

0 0 3 1.5

(20A01606) DESIGN STUDIO LAB WITH STAAD PRO

Course Objectives:

- To teach the students to understand the details of STAAD.Pro software package
- To enable the students to prepare input data for RCC & Steel structures
- To enable the students to design different components of structures
- Students will learn the details of STAAD.Pro software package and know the behaviour of RCC and Steel structures.
- Students will understand the bending moment diagram, drawn in tension face and shear force diagram

Course Outcomes:

At the end of the course, the student will be able to

- Understand the details of STAAD.Pro software package
- To prepare input data of STAAD.Pro.
- Run STAAD.Pro for analysis and desing of structures
- Design different components of structures
- Expertise in functionalities like model generation and editing; loading analysis; concrete designing etc.

LIST OF EXERCISES

- 1. Analysis & Design of 2D Frame under pure Vertical loading using Staad Pro Software.
- 2. Analysis & Design of 2D Frame under both Vertical & Horizontal loading using Staad Pro Software.
- 3. Analysis & Design of 2D Truss using Staad Pro Software.
- 4. Analysis & Design of 3D Frames using Staad Pro Software.
- 5. Analysis & Design of Different types of Beams Using Staad Pro Software.
- 6. Analysis & Design of Rectangular & Circular Columns Using Staad Pro Software.
- 7. Analysis & Design of Isolated Footings Using Staad Pro Software.
- 8. Analysis & Design of Retaining Walls Using Staad Pro Software.
- 9. Analysis & Design of One Way and Two Way Slabs Using Staad Pro Software.
- 10. Analysis & Design of Simple Tower by Using Staad Pro Software.

Textbooks:

Staad Pro V8i for Beginners:With Indian Examples by T.S.Sarma, Notion Press Media Pvt Ltd

0 0 3 1.5

(20A01607) HIGHWAY MATERIALS LAB

Course Objectives:

- To make the students familiar with principles and procedures of testing of highway materials.
- To provide hands-on experience for the students on different Tests needed to be conducted on Aggregates and Bitumen to find out their suitability for Road Works.
- To conduct standard tests for bitumen pavement design and paving materials in order to assess their engineering properties and behaviour.
- To relate material characteristics to various application of construction.
- To Understand the test procedures for characterization of aggregates and bituminous mixes

Course Outcomes:

By the end of this course the student will be able to

- Categorize the test on materials used Civil Engineering Building & Pavement constructions
- Identify engineering properties of aggregate.
- Identify the grade & properties of bitumen.
- Examine the tests performed for Bitumen mixes.
- The students will be able to select the most appropriate materials for highway construction based on material characteristics, engineering properties, design requirements, cost, availability, and expected service life.

LIST OF EXPERIMENTS

TESTS ON ROAD AGGREGATES:

- Aggregate Crushing value Test.
- Aggregate Impact Test.
- Abrasion Test.
- Shape tests

TESTS ON BITUMINOUS MATERIALS:

- Penetration Test.
- Ductility Test.
- Softening Point Test.
- Flash and fire point tests.
- Demo on Marshall Stability Test on Bituminous Mixes

Textbooks:

Highway Material Testing and Quality Control (English, Paperback, G. Venkatappa Rao, K. Ramachandra Rao, Kausik Pahari, D.V. Bhavanna Rao) Dreamtech Press

0 0 3 1.5

(20A01608) CONCRETE TECHONOLOGY LAB

Course Objectives:

- Outline the importance of testing of cement and its properties
- Assess the different properties of aggregate
- Summarise the concept of workability through workability tests
- Aspects relevant to fresh and hardened concrete will also be explored such as: mixing, handling, casting (workability).
- Evaluate the strength of structural elements using NDT techniques.

Course Outcomes:

- To determine the consistency and fineness of cement.
- To understand the non-destructive testing procedure on concrete.
- To determine the workability of cement concrete by compaction factor, slump and Vee-Bee tests
- Ability to know the setting times of cement.
- To determine the specific gravity of fine aggregate and coarse aggregate.

LIST OF EXPERIMENTS

- 1. Determine the workability of Fresh Conventional Concrete by using Flow Table Test
- 2. Determine the Density, Yield and Air Content of Fresh Conventional concrete
- 3. Determine the Modulus of Elasticity for Conventional Concrete
- 4. Determine the Filing Ability of Fresh Self Compacting Concrete by using Slump Flow Test
- 5. Determine the Flowability of Fresh Self Compacting Concrete by using V- Funnel Test
- 6. Determine the Flowability of Fresh Self Compacting Concrete by using L Box Test
- 7. Determine the Resistance of Fresh Self Compacting Concrete to segregation
- 8. Determine the Compressive Strength for Self-Compacting Concrete
- 9. Determine the Split Tensile Strength for Self-Compacting Concrete
- 10. Determine the Modulus of Elasticity for Self-Compacting Concrete

LIST OF EQUIPMENT

- 1. Apparatus for aggregate crushing test.
- 2. Aggregate Impact testing machine
- 3. Pycnometers.
- 4. Los angles Abrasion test machine
- 5. Vicat's apparatus
- 6. Specific gravity bottle.
- 7. Lechatlier's apparatus.
- 8. Slump and compaction factor setups
- 9. Longitudinal compressor meter and 1
- 10. Rebound hammer, Pulse velocity machine.
- 11. Relevant IS Codes

Reference Books

- 1. Concrete Manual by M.L.Gambhir, DhanpatRai&co., Fourth edition.
- 2. Building construction and materials (Lab Manual) by Gambhir , TMH publishers 2017 edition

(20A01609) BIM FUNDAMENTALS FOR CIVIL ENGINEERS

Course Objectives:

- To learn the essential concepts of BIM, and the basic technical skills to create and manipulate a BIM model
- To retrieve information from a BIM model and how to use common modeling tools.
- Training students on the broad and expanding field of BIM applications by providing a general lexicon
- To efficiently implement the BIM process to coordinate and communicate design intents as well as to convey data necessary for further building analysis
- Providing a comprehensive overview of the main BIM applications currently in use

Course Outcomes:

- Simulate construction schedules and logistics using BIM to communicate and evaluate project activities
- Apply BIM for buildability scenario forecasting, including interference management and clash detection
- Assess low/zero-carbon and renewable technologies
- Apply BIM and low/zero carbon technology to evaluate building environmental performance
- The course provides a comprehensive overview of the main BIM applications currently in use, in order to develop a critical approach to these techniques

UNIT IBIM in Design Coordination

Develop an advanced understanding of BIM approaches for retrieving, analysing and integrating information to aid decision-making, and using appropriate BIM tools.

UNIT IIBIM in Construction Operations

Looks at a range of BIM approaches and applications for construction planning and operations, including simulating construction schedules and logistics, buildability forecasting and clash detection.

UNIT IIIBIM in Business and Practice

The opportunity to pursue a case study closely related to a company's interests, and how they use BIM approaches and protocols. You will help the company with a BIM organisational strategic and implementation plan to ensure it's aligned with their business strategy.

UNIT IVBIM in Operation and Maintenance

Examine the role of BIM for building and asset operation and maintenance, and the challenges of BIM-Facilities Management (FM) integration

UNIT VLow/Zero-Impact Buildings

Assesses the role of BIM in designing and operating comfortable buildings that significantly reduce or eliminate energy use. You will evaluate low or zero-carbon and renewable technologies, apply BIM to evaluate buildings' environmental performance and explore the impact of Part L, BREEAM, LEED and EPC ratings.

Textbooks:

- 1. BIM Handbook: A Guide to Building Information Modeling Chuck Eastman, et al.
- 2. Building Information Modeling: A Strategic Implementation Guide Dana K. Smith and Michael Tardif
- 3. Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations Willem Kymmell

4. BIM & Construction Management: Proven Tools, Methods, & Workflows -Brad Hardin Online Learning Resources:

https://www.coursera.org/lecture/bim-fundamentals/203-necessity-of-bim-u4nue

(20A99601) INTELLECTUAL PROPERTY RIGHTS AND PATENTS (Mandatory Non-Credit Course)

Course Objectives:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws, Cyber Laws, Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations

Course Outcomes:

- Understand IPR law & Cyber law
- Discuss registration process, maintenance and litigations associated with trademarks
- Illustrate the copy right law
- Enumerate the trade secret law.

UNIT I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics – Types of Intellectual Property – Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement – Regulatory – Overuse or Misuse of Intellectual Property Rights – Compliance and Liability Issues.

UNIT II

Introduction to Copyrights – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

UNIT III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters. **UNIT IV**

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

UNIT V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law. Introduction to Cyber Law – Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

Textbooks:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections

References:

- 1. Prabhuddha Ganguli: ' Intellectual Property Rights" Tata Mc-Graw Hill, New Delhi
- 2. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- 4. M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub.

3 0 0 3

(20A01701a) FINITE ELEMENT ANALYSIS (Professional Elective Course – III)

Course Objectives:

- Formulate the design and heat transfer problems with application of FEM.
- Solve 1 D, 2 D and dynamic problems using Finite Element Analysis approach
- To impart preliminary knowledge of analyzing structures using finite element method.
- To learn advanced methods of structural analysis and to apply these methods for analysis of indeterminate structures.

Course Outcomes:

- Understand the fundamental ideas of FEM.
- Develop shape functions and stiffness matrices for different elements
- Generate global stiffness matrices and global load vectors
- Have knowledge on generation of shape function for higher order elements using lagrangian interpolation function.
- Analyze 2D iso-parametric elements

UNIT IIntroduction

Concepts of FEM – Steps involved – Merits &Demerits – Energy principles – Discretization – Rayleigh –Ritz method of functional approximation. Principles of Elasticity: Equilibrium equations – strain displacement relationships in matrix form – Constitutive relationships for plane stress, plane strain and Axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT IIOne Dimensional & Two-Dimensional Elements

Stiffness matrix for bar element – Shape functions – 1D and 2D elements – Types of elements for plane stress and plane strain analysis – Displacement models – Generalized coordinates – Shape functions – Convergent and compatibility requirements – Geometric invariance – Natural coordinate system – Area and volume coordinates

UNIT IIIElement stiffness matrix

Generation of element stiffness and nodal load matrices for 3-node triangular element and four - noded rectangular elements.

UNIT IVIso-parametric Formulation

Iso-parametric elements for 2D analysis –Formulation of CST element, 4 – nodded and 8-noded Iso-parametric quadrilateral elements –Lagrangian and Serendipity elements.

AXI-SYMMETRIC ANALYSIS: Basic Principles-Formulation of 4-noded iso-parametric Axisymmetric element.

UNIT VSolution techniques

Numerical Integration, Static condensation, assembly of elements and solution techniques for static loads.

Textbooks:

- 1. Finite Element Analysis for Engineering and Technology, by Tirupathi R Chandraputla, Universities Press Pvt Ltd, Hyderabad. 2003.
- 2. Finite Element analysis-Theory & Programming, by C. S. Krishna MurthyTataMc.Graw Hill Publishers.

Reference Books:

- 1. Finite element analysis and procedures in engineering, by H.V. Lakshminaryana, 3rd edition, Universities press, Hyderabad.
- 2. Concepts and applications of Finite Element Analysis, by Robert D. Cook, Michael E Plesha, John Wiley & sons Publications
- 3. Finite element analysis in Engineering Design, by S. Rajasekharan, S. Chand Publications, New Delhi.

Online Learning Resources: https://nptel.ac.in/courses/105106051

(20A01701b) RAILWAYS, AIRPORT AND HARBOUR ENGINEERING (Professional Elective Course – III)

Course Objectives:

- Ability to explain the components of permanent way and its components and their functions and requirements.
- Ability to explain the geometric design elements of Railway track like cant, radius of curve and degree of curve etc..and their design components.
- Ability to the Aircraft characteristics and their influence on various design elements of an Airport.
- Ability to explain the concepts of runway orientation, Airport lighting, Airport components and their planning and geometric design of runways and taxiways.
- Ability to explain the difference between ports and Harbours, types of Ports and Harbours, various facilities needed in Ports and Harbours and NavigationalAids for ships.

Course Outcomes (CO):

- Understand the components of permanent way and its components and their functions and requirements.
- Understand the geometric design elements of Railway track like cant, radius of curve and degree of curve etc..and their design components.
- Understand the Aircraft characteristics and their influence on various design elements of an Airport.
- Understand the concepts of runway orientation, Airport lighting, Airport components and their planning and geometric design of runways and taxiways.
- Understand the difference between ports and Harbours, types of Ports and Harbours, various facilities needed in Ports and Harbours and Navigational Aids for ships.

UNIT IRailway Engineering

Introduction – Permanent way components – Cross section of permanent way – Functions and requirements of rails, sleepers and ballast – Types of gauges – Creep of rails – Theories related to creep – Coning of wheels – adzing of sleepers – Rail fastenings.

UNIT IIGeometric design of railway track

Gradients – Grade compensation – Cant and negative super elevation – Cant deficiency – Degree of curves – Safe speed on railway track – Points and crossings – Layout and functioning of left hand turn out and right hand turn outs – Station yards – Signaling and interlocking.

UNIT IIIAirport Engineering

Airport site selection – Factors affecting site selection and surveys- Runway orientation – Wind rose diagram – basic runway length – Correction for runway length – Terminal area – Layout and functions – Concepts of terminal building – Simple building , Linear concept, pier concept and satellite concept – Typical layouts .

UNIT IVGeometric design of runways and taxiways

Aircraft characteristics – Influence of characteristics on airport planning and design – Geometric design elements of runway – Standards and specifications - Functions of taxiways – Taxiway geometric design – Geometric elements and standard specifications – Runway and taxiway lighting.

UNIT VPorts and Harbors

Harbours - Requirements of ports and harbors – Types of ports – Classification of harbors – Docks and types of docks – Dry docks, wharves and jetties – Breakwaters: layouts of different types of harbors and docks – Dredging operations – navigation aids.

Textbooks:

1. Transportation Engineering: Railways, Airports, Docks and Harbours, R Srinivasa Kumar, Universities Press, 2014

- 2. Airport Planning and Design- S.K. Khanna and M.G Arora, Nemchand Bros 6th edition
- 3. Dock and Harbour Engineering Hasmukh P Oza, Gutam H Oza, Chartor Publishers pvt ltd.
- 4. Railway Engineering by Satish Chandra and Agarwal, M.M. Oxford Higher Education, University Press New Delhi(2007).

Reference Books:

- 1. A Text Book of Railway Engineering-S.C.Saxena and S.Arora, Dhanpatrai and Sons, New Delhi 2010
- 2. Highway, railway, Airport and Harbour Engineering K.P. Subramanian, Scitechpubilishers.
- 3. Harbour, Dock and Tunnel Engineering R. Srinivasan, Charotar Publishing House Pvt. Limited, 2009
- 4. Railway Track Engineering by J.S.MundreyMcGraw Hill Education 5th edition 2017
- 5. A Text book of Transportation Engineering S.P.Chandola S.Chand& Co. Ltd. (2001).

Online Learning Resources:

3 0 0 3

(20A01701c) GROUND IMPROVEMENT TECHNIQUES (Professional Elective Course – III)

Course Objectives:

- Understand the fundamental concept of ground improvement techniques.
- Apply knowledge of densification methods.
- Understand the concepts of stabilization mechanical & chemical methods.
- Impart knowledge of components of reinforced earth & design of reinforced earth walls.
- Understanding the identification & foundation techniques.

Course Outcomes:

- Given solution to solve various problems.
- Use effectively the various methods of ground improvement techniques.
- The locally available technique for ground improvement so that the design of foundation.
- Identify different types of function & application & geo member.
- Be able to anticipate & subject the soils test for identification method of determination of swell pressure.

UNIT I

DEWATERING: Methods of de-watering- Sumps and interceptor ditches- Single, multi stage well points - Vacuum well points- Horizontal wells-foundation drains-blanket drains - Criteria for selection of fill material around drains –Electro-osmosis.

GROUTING: Objectives of grouting- Grouts and their properties- Grouting methods- ascending, descending and stage grouting- hydraulic fracturing in soils and rocks- Post grout test.

UNIT II

DENSIFICATION METHODS IN GRANULAR SOILS:-

In - situ densification methods in granular Soils:- Vibration at the ground surface, Impact at the Ground Surface, Vibration at depth, Impact at depth.

DENSIFICATION METHODS IN COHESIVE SOILS:-

In – situ densification methods in Cohesive soils:– Preloading or dewatering, Vertical drains – Sand Drains, Sand wick geodrains – Stone and lime columns – thermal methods.

UNIT III

STABILISATION: Methods of stabilization-mechanical-cement- Lime-bituminous-Chemical stabilization with calcium chloride, sodium silicate and gypsum

UNIT IV

REINFORCED EARTH: Principles – Components of reinforced earth – Factors governing design of reinforced earth walls – Design principles of reinforced earth walls.

GEOSYNTHETICS: Geotextiles- Types, Functions and applications – Geogrids and geomembranes – Functions and applications.

UNIT V

EXPANSIVE SOILS: Problems of expansive soils – Tests for identification – Methods of determination of swell pressure. Improvement of expansive soils – Foundation techniques in expansive soils – Under reamed piles.

Textbooks:

- 1. Engineering Principles of Ground Modification, Haussmann M.R., McGraw-Hill International Edition(1990).
- 2. Ground Improvement Techniques, Dr.P.Purushotham Raj. Laxmi Publications, New Delhi / University science press, New Delhi 2nd edition 2016
- 3. Ground Improvement Techniques, NiharRanajanPatraVikas Publications, New Delhi

Reference Books:

- 1. Ground Improvement, Moseley M.P. Blackie Academic and Professional, Boca Taton, Florida, USA(1993).
- 2. Ground Control and Improvement, Xanthakos P.P, Abramson, L.W and Brucwe, D.A (1994) John Wiley and Sons, New York, USA.
- 3. Designing with Geosynthetics, Robert M. Koerner, Prentice Hall New Jersey, USA

Online Learning Resources:

3 0 0 3

(20A01702a) PRESTRESSED CONCRETE (Professional Elective Course – IV)

Course Objectives:

- Understand the principles & necessity of prestressed concrete structures
- Get the knowledge on various losses of prestress.
- Analyse PSC beams with straight, concentric, eccentric, bent and parabolic tendons and design beams of rectangular and I section for flexure.
- Design shear reinforcements, structural elements for shear, torsion and anchorage as per the provisions of BIS.
- Interpret the transmission mechanism of pre-stressing force by bond and compute
- deflection of beams under loads

Course Outcomes:

- Understand the concepts of pre-stressing and methods of pre stressing.
- Compute losses of pre-stress in pre-stressed concrete members.
- Design PSC beams under flexure and shear.
- Estimate the short- and long-term deflections of PSC beams.
- Apply prestressing concepts for composite beams.

UNIT IIntroduction

Principles of pre-stressing – Prestressing systems - Pre-tensioning and post tensioning- Advantages and limitations of Prestressed concrete- Need for high strength materials. Methods of pre-stressing: Pre-tensioning (Hoyer system) and Post-tensioning methods (Freyssinet system and Gifford- Udall System).

UNIT IILosses of pre-stress

Loss of pre-stress in pre-tensioned and post-tensioned members due to elastic shortening, shrinkage and creep of concrete, relaxation of stress in steel, anchorage slip and frictional losses.

UNIT IIIFlexure and shear

Analysis of beams for flexure and shear - Beams pre-stressed with straight, concentric, eccentric, bent and parabolic tendons- Kern line - Cable profile - Design of PSC beams (rectangular and I sections) using IS 1343. Analysis and design of rectangular and I beams for shear. Introduction to Transmission length and End block (no Design and Analytical problems).

UNIT IVDeflections

Control of deflections- Factors influencing deflections - Short term deflections of uncracked beams-Prediction of long time deflections.

UNIT VComposite beams

Different Types- Propped and Un-propped- stress distribution- Differential shrinkage- Analysis of composite beams.

Textbooks:

- 1. Prestressed Concrete by N. Krishna Raju, Tata Mc.Graw Hill Publications 6th edition 2018
- 2. Prestressed concrete by N.RajagopalanNarosa Publishing House 2nd edition 2017

Reference Books:

- Design of Prestressed Concrete Structures by T.Y. Lin & Ned H. Burns, John Wiley & Sons 3rd edition 2010
- 2. Prestressed Concrete Design by Praveen Nagrajan, Pearson publications, 2013.
- 3. Prestressed Concrete by Ramamrutham, Dhanpatrai Publications 2020 edition
- 4. BIS code on "prestressed concrete", IS: 1343 to be permitted into the examination Hall.

Online Learning Resources: <u>https://nptel.ac.in/courses/105106118</u>,

3 0 0 3

(20A01702b) HYDRAULICS STRUCTURES AND WATERPOWER ENGINEERING (Professional Elective Course – IV)

Course Objectives:

- Introduce the types of irrigation systems and introduce the concepts of planning and design of irrigation systems
- Understand design methods of erodible and non-erodible canals
- Know the principles of design of hydraulic structures on permeable foundations
- Know the concepts for analysis and design principles of storage and diversion works.
- Learn design principles of canal structures

Course Outcomes:

- Design various channel systems
- Design head and cross regulator structures and also Identify various types of reservoir and their design aspects.
- By the Establishes the understanding of cross drainage works and its design.
- Students understood all type of dams and reservoirs and their designs
- Students understood Spillways, Gates & Energy dissipaters.

UNIT I

CANAL REGULATION WORKS: Canal falls: Necessity and location of falls; Types of falls; Classification of falls; Design of sarada type fall.

Canal regulators: head regulators and cross-regulators; design of cross-regulator and distributary head regulator.

CROSS DRAINAGE WORKS: Introduction; types of cross drainage works; selection of suitable type of cross drainage work; classification of aqueducts and siphon aqueducts.

UNIT II

STREAM GAUGING: Necessity; Selection of gauging sites; Methods of Discharge Measurement Area-Velocity method; Slope-Area method; Tracer method, Electromagnetic induction method, Ultrasonic method; Measurement of depth –Sounding rod, Echo-Sounder; Measurement of velocity: Floats – Surface floats, Sub–Surface float or Double float, Velocity rod; Pitot tube ;Current meter-Rating of current meter, measurement of velocity; chemical method; Measurement of stage-Staff gauge, wire gauge, water stage recorder, bubble gauge recorder; stage-discharge curve.

RIVER ENGINEERING:

Classification of rivers; Meandering; Causes of meandering; Basic factors controlling process of meandering; Aggrading type of river; Degrading type of River.

UNIT III

RESERVOIR PLANNING:

Introduction; Investigations for reservoir planning; Selection of site for a reservoir; Zones of storage in a reservoir; Storage capacity and yield; Mass inflow curve and demand curve; Calculation of reservoir capacity for a specified yield from the mass in flow curve; Determination of safe yield from a reservoir of a given capacity; Sediment flow in streams: Reservoir sedimentation; Life of reservoir; Reservoir sediment control; Flood routing; Methods of flood routing-Graphical Method (Inflow – Storage discharge curves method).

DAMS :GENERAL: Introduction; Classification according to use; Classification according to material- Gravity dams, Arch dams, Buttress dams, Steel dams, Timber dams, Earth dams and rock fill dams-Advantages and disadvantages; Physical factors governing selection of type of dam ; selection of site for a dam.

GRAVITY DAMS: Introduction; Forces acting on a gravity dam; Combination of loading for design; Modes of failure: stability requirements; principal and shear stresses; Stability analysis; Elementary profile of a gravity dam; Practical profile of a gravity dam; Limiting height of a gravity

dam- High and low gravity dams; Design of gravity dams-single step method;

EARTH DAMS: Introduction; Types of earth dams; Causes of failure of earth dams; Criteria for safe design of earth dams; Section of an earth dam; Design to suit available materials; Seepage control measures;

UNIT V

SPILLWAYS: Introduction; Types of spillways; Profile of ogee spillway; Energy dissipation below spillways for relative positions of jump height curve and tail water curve; Stilling basins; Indian standards on criteria for design of hydraulic jump type stilling basins with horizontal aprons; Spillway crest gates-Types and description only.

WATER POWER ENGINEERING: Development of hydro power in India; Classification of hydel plants: runoff river plants, storage plants and pumped storage plants; low, medium and high head schemes.

Textbooks:

- 1. Irrigation and Water Power Engineering by Dr. B.C.Punmia& Dr. Pande B.B. Lal; Laxmi Publications pvt. Ltd., New Delhi 17th edition 2021
- 2. Irrigation Engineering and Hydraulic Structure by S. K. Garg; Khanna Publishers, Delhi 36th edition

Reference Books:

- 1. Irrigation and water resources engineering by G.L. Asawa, New Age International Publishers
- 2. Irrigation, Waterpower and Water Resources Engineering by K R Arora; Standard Publication, New Delhi 2010
- 3. Water resources engineering by Satyanarayana Murthy. Challa, New Age International Publishers 2020

Online Learning Resources: https://nptel.ac.in/courses/105105110

3 0 0 3

(20A01702c) INDUSTRIAL WASTE AND WASTEWATER MANAGEMENT (Professional Elective Course – IV)

Course Objectives:

- To distinguish between the quality of domestic and industrial water requirements and Wastewater quantity generation.
- To Know the industrial process, water utilization and wastewater generation.
- To Impart knowledge on selection of treatment methods for industrial wastewater.
- To acquire the knowledge on operational problems of common effluent treatment plants.
- To gain knowledge on different techniques and approaches for minimizing the generation and application of Physio-chemical and biological treatment methods for recovery, reuse and disposal of industrial wastewater.

Course Outcomes:

- To understand the fundamental concepts of wastewater treatment.
- To conduct experiments and the ability to analyze the data, interpret results and draw conclusions.
- To design a component, system or process to meet desired needs and imposed constraints.
- To Identify, formulate and solve civil engineering problems
- To understand the modern techniques skills and tools including computer applications, necessary for engineering practice.

UNIT I

Sources of Pollution - Physical, Chemical, Organic & Biological properties of Industrial Wastes - Difference between industrial & municipal waste waters - Effects of industrial effluents on sewers and Natural water Bodies.

UNIT II

Pre & Primary Treatment - Equalization, Proportioning, Neutralization, Oil separation by Floating-Waste Reduction-Volume Reduction-Strength Reduction.

UNIT III

Waste Treatment Methods - Nitrification and De-nitrification-Phosphorous removal -Heavy metal removal - Membrane Separation Process - Air Stripping and Absorption Processes - Special Treatment Methods - Disposal of Treated Waste Water.

UNIT IV

Characteristics and Composition of waste water and Manufacturing Processes of Industries like Sugar, Characteristics and Composition of Industries like Food processing Industries, Steel, and Petroleum Refineries.

UNIT V

Characteristics and Composition of Industries like Textiles, Tanneries, Atomic Energy Plants and other Mineral Processing Industries – Joint Treatment of Raw Industries waste water and Domestic Sewage – Common Effluent Treatment Plants(CETP) – Location, Design, Operation and Maintenance Problems – Economical aspects.

Textbooks:

- 1. Wastewater engineering Treatment disposal reuse by Metcalf & Eddy, Tata McGraw Hill.
- 2. Industrial Water Pollution Control by Eckenfelder, W.W., McGraw-Hill

Reference Books:

- 1. Industrial Waste by M.N. Rao and Dutta CBS Publishers and Distributors Pvt Ltd; 3rd edition (January 30, 2018)
- 2. Water & Wastewater Technology by Mark J. Hammer, Mark J. Hammer, Jr., Prentice Hall of India.
- 3. Theories and practices of Industrial Waste Engineering by N.L. NemerrowAddison-Wesley publishers **Online Learning Resources**: https://nptelvideos.com/video.php?id=1118

3 0 0 3

(20A01703a) REMOTE SENSING & GIS (Professional Elective Course – V)

Course Objectives:

- Apply the concepts of Photogrammetry and its applications such as determination of heights of objects on Terrain.
- Understand the basic concept of Remote Sensing and know about different types of satellite and sensors.
- Illustrate Energy interactions with atmosphere and with earth surface features, Interpretation of satellite and top sheet maps
- Understand different components of GIS and Learning about map projection and coordinate system
- Develop knowledge on conversion of data from analogue to digital and working with GIS software.

Course Outcomes:

- Comparing with ground, air and satellite-based sensor platforms.
- Interpret the aerial photographs and satellite imageries.
- Create and input spatial data for GIS application.
- Apply RS and GIS concepts in water resources engineering.
- Applications of various satellite data.

UNIT I

Introduction to photogrammetry

Principles & types of aerial photograph, geometry of vertical aerial photograph, Scale & Height measurement on single vertical aerial photograph, Height measurement based on relief displacement, Fundamentals of stereoscopy, fiducially points, parallax measurement using fiducially line.

UNIT II

Remote sensing

Basic concepts and foundation of remote sensing – Elements involved in remote sensing, electromagnetic spectrum, remote sensing terminology and units. Energy resources, energy interactions with earth surface features and atmosphere, resolution, sensors and satellite visual interpretation techniques, basic elements, converging evidence, interpretation for terrain evaluation, spectral properties of water bodies, introduction to digital data analysis.

ÛNIT IÎI

Geographic information system

Introduction, GIS definition and terminology, GIS categories, components of GIS, fundamental operations of GIS, A theoretical framework for GIS. Data collection and input overview, data input and output. Keyboard entry and coordinate geometry procedure, manual digitizing and scanning, Raster GIS, Vector GIS – File management, Spatial data – Layer based GIS, Feature based GIS mapping.

UNIT IV

GIS spatial analysis

GIS spatial analysis: Computational Analysis Methods (CAM), Visual Analysis Methods (VAM), Data storage-vector data storage, attribute data storage, overview of the data manipulation and analysis. Integrated analysis of the spatial and attribute data.

UNIT V

Water resources applications

Land use/Land cover in water resources, Surface water mapping and inventory -Watershed management for sustainable development and Watershed characteristics - Reservoir sedimentation, Fluvial Geomorphology - Ground Water Targeting, Identification of sites for artificial Recharge structures - Inland water quality survey and management, water depth estimation and bathymetry.

Textbooks:

- Remote Sensing and GIS by B. Bhatta, Oxford University Press, New Delhi 3rd edition 2021
- 2. Remote Sensing and its applications by L. R. A. Narayana, University Press 1999.

Reference Books:

- 1. Fundamentals of remote sensing, by George Joseph, Universities press, Hyderabad 3rd edition 2018
- 2. Advanced surveying: Total station GIS and remote sensing, by Satheesh Gopi, Pearson publication 2nd edition 2017
- 3. Concepts & Techniques of GIS, by C. P. Lo Albert, K.W. Yonng, Prentice Hall (India) Publications.
- 4. Remote sensing and GIS, by M. Anji Reddy B. S. Publications, New Delhi.

Online Learning Resources:

3 0 0 3

(20A01703b) BRIDGE ENGINEERING (Professional Elective Course – V)

Course Objectives:

- To introduce the students to choose the appropriate bridge type for a given project, and toanalyses and design the main components of the chosen bridge
- To teach the students the method of designing a deck slab bridge for class AA loading
- To teach the students about the general features of a beam and slab bridge and various methods for design of a interior panel for class AA loading
- To make the students familiarize with components of plate girder bridges and composite bridges and their design procedure
- To introduce students the importance and stability analysis procedure of piers and abutments subjected to various forces

Course Outcomes:

- The students are expected to be able to understand the load-carrying capacity of various types of bridges, upon learning the structural responses to different kinds of loads.
- Analyse the box culverts for the given loading and detail the box culverts.
- They should be able to design short and medium span bridges, with confidence using existing codes of practice
- Understand the importance of plate girder bridges and composite bridges and their design procedure
- Perform stability analysis for substructures components like piers and abutments, wing walls

UNIT I

INTRODUCTION: Importance of site investigation in Bridge design. Highway Bridge loading standards. Impact factor. Railway Bridge loading standards (B.G. ML Bridge) various loads in bridges.

BOX CULVERT: General aspects. Design loads, Design of Box culvert subjected to RC class AA tracked vehicle only.

BRIDGE BEARINGS: General features – Types of Bearings – Design principles of steel Rocker & Roller Bearings – Design of a steel Rocker Bearing – Design of Elastometric pad Bearing.

UNIT II

DECK SLAB BRIDGE: Introduction – Effective width method of Analysis Design of deck slab bridge (Simply supported) subjected to class AA Tracked Vehicle only.

UNIT III

BEAM & SLAB BRIDGE (T-BEAM BRIDGE): General features – Design of interior panel of slab – Pigeauds method – Design of a T-beam bridge subjected to class AA tracked vehicle only.

UNIT IV

PLATE GIRDER BRIDGE: Introduction – elements of a plate girder and their design. Design of a Deck type welded plate girder – Bridge of single line B.G.

COMPOSITE BRIDGES: Introduction – Advantages – Design of Composite Bridges consisting of RCC slabs over steel girders including shear connectors

UNIT V

PIERS & ABUTMENTS: General features – Bed Block – Materials piers & Abutments Types of piers – Forces acting on piers – Stability analysis of piers – General features of Abutments – forces acting on abutments – Stability analysis of abutments – Types of wing walls – Approaches – Types of Bridge foundations (excluding Design).

Textbooks:

- 1. Bridge Engineering by Ponnu Swamy, TATA Mcgraw Hill Company, New Delhi 3rd edition 2017
- 2. Design of Bridges by N.Krishnam Raju, Oxford & IBH, Publishing Company Pvt.ltd., Delhi 5th edition 2019

Reference Books:

- 1. Design of Bridges Structure by T.R.Jagadish&M.A.Jayaram Prentice Hall of India Pvt., Delhi.
- 2. Design of Steel structures, by B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain,
- 3. Laxmi Publications, New Delhi 2015 edition
- 4. Essentials of bridge engineering by D.J.VictorOxford& IBH Publishers Co., New Delhi, 6th edition 2019
- 5. Design of Steel structures by Ramachandra Scientific Publishers Journals Dept 13th edition
- 6. Design of R.C.C. structures B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Laxmi Publications, New Delhi 2015
- 7. Relevant IRC & Railway bridge Codes.

Online Learning Resources:

3 0 0 3

(20A01703c) DESIGN AND DRAWING OF IRRIGATION STRUCTURES (Professional Elective Course – V)

Course Objectives:

- To know the design and drawing aspects of Sloping glacis weir,
- To know the design and drawing aspects Tank sluice with tower head,
- To know the design and drawing aspects Type III Siphon aqueduct,
- To know the design and drawing aspects Surplus weir,
- To know the design and drawing aspects Trapezoidal notch fall and Canal regulator.

Course Outcomes:

- Design and draw the plan and cross section of Sloping glacis weir.
- Design and draw the plan and cross section of Tank sluice with tower head
- Design and draw the plan and cross section of Type III Syphon aqueduct
- Design and draw the plan and cross section of Surplus weir.
- Design and draw the plan and cross section of Trapezoidal notch fall and Canal regulator

Design and draw the plan and cross-sectional view of following irrigation structures

- Sloping glacis weir.
- Tank sluice with tower head
- Type III Siphon aqueduct.
- Trapezoidal notch fall.
- Canal regulator.
- **Final Examination pattern**: Any two questions of the above six designs may be asked out of which the candidate has to answer one question. The duration of examination will be three hours.

Textbooks:

- 1. Design of minor irrigation and canal structures by C. Satyanarayana Murthy, Wiley eastern Ltd.
- 2. Irrigation engineering and Hydraulic structures Standard by S.K. Garg, Khanna Publishers

3 0 0 3

(20A52701a) ENTREPRENEURSHIP & INCUBATION (HUMANITIES ELECTIVE II)

Course Objectives:

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Course Outcomes:

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

UNIT I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

UNIT II

Starting the New Venture - Generating business idea – Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

UNIT III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance – Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey- Institutions in aid of entrepreneurship development

UNIT IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants – Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

UNIT V

Fundamentals of Business Incubation - Principles and good practices of business incubation- Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Textbooks:

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit : login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

References:

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.JanakiramandM.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-Resources

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- 3. http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

(20A52701b) MANAGEMENT SCIENCE (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training& Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Course Outcomes:

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

UNITI INTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - **Organisational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

UNIT II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Statistical Quality Control- Deming's contribution to Quality. **Material Management -**Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management - **Marketing Management -** Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

UNIT IIIHUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning – Nature - Managerial and Operative functions - Evolution of HRM -Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment -Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept -Methods of Performance Appraisal – Placement - Employee Induction - Wage and Salary Administration

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management -** Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

UNIT V CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) -Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept -Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Re-engineering and Bench Marking -Balanced Score Card - Knowledge Management.

Textbooks:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

References:

- 1. Koontz & Weihrich, "Essentials of Management", 6th edition, TMH, 2005.
- 2. Thomas N.Duening& John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- 3. Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
- 4. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– III-II Sem L T P C 3 0 0 3

(20A52701c) ENTERPRISE RESOURCE PLANNING (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Course Outcomes:

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

UNITI

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

UNITII

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Design-making Capability

UNITIII

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

UNITIV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

UNITV

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Textbooks:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

References:

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE)– IV-I Sem L T P C

3 0 0 3

(20A01707) ESTIMATION, COSTING AND VALUATION (Skill Oriented Course-V)

Course Objectives:

- To impart basic knowledge on different types of estimation
- To enrich with specifications and tender procedures.
- To give insights on various types of contract agreements.
- To prepare detailed estimates
- To inculcate data preparation for abstract estimation
- To teach procedure for valuation of buildings.

Course Outcomes:

- Understand basics on methods and types of estimation.
- Formulate specifications and write tender documents.
- Prepare Detailed and Abstract Estimates
- Determine rate analysis of different items.
- Valuation of buildings.

LIST OF EXPERIMENTS

- 1. Activity based learning on methods and types of estimates
- 2. Preparation of Detailed estimate for a single storey residential building using wall to wall method
- 3. Preparation of Detailed estimate for a single storey residential building using centre line method for Earthwork, foundations, Super structure, Fittings including sanitary and electrical fittings & Paintings.
- 4. Preparation of Detailed estimate for a two storey residential building using centre line method for Earthwork, foundations, Super structure, Fittings including sanitary and electrical fittings & Paintings.
- 5. Activity based learning of Estimate Data and Rate Analysis
- 6. Preparation of Abstract Estimate for the detailed estimate in Exercise No.3
- 7. Preparation of Abstract Estimate for the detailed estimate in Exercise No.4
- 8. Writing of Measurement book and Bill preparation as per AP State Govt Procedure for detailed estimate in No. 3 and abstract estimate of No. 6
- 9. Writing of detailed specifications for various items of estimate and preparing a model Tender document for the work Listed in No. 3 and 6
- 10. Activity based learning for Valuation of Buildings, Cost escalation procedures and Value Analysis for any one work

Textbooks:

- 1. Estimating and Costing in Civil Engineering (Theory & Practice) by Dutta, B. N., UBS Publishers, 28th edition 2021
- 2. Civil Engineering Contracts and Estimates", by B. S. Patil, Universities Press Pvt Ltd, Hyderabad. 4th Edition 2015.

Reference Books:

- 1. Estimation, Costing and Specifications by M. Chakraborthi, Laxmi publications 24th edition
- 2. A Textbook of Estimating and Costing(Civil) by D. D. Kohli & R. C. Kohli, S. Chand and Company Limited, New Delhi
- 3. Standard Schedule of rates and standard data book by public works department.
- I. S. 1200 (Parts I to XXV, "Method of Measurement of Building and Civil Engineering works B.I.S.)" 1974

Online Learning Resources: https://onlinecourses.swayam2.ac.in/nou20_cs11/preview

JNTUA B.Tech. R20 Regulations

OPEN ELECTIVES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

$\frac{2}{3}$ $\begin{array}{c} 0$ 0 0 3

(20A02505) ELECTRIC VEHICLES (Open Elective-I)

Course Objectives:

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

Course Outcomes:

- Understand and differentiate between conventional and latest trends in Electric Vehicles
- Analyze various EV resources, EV dynamics and Battery charging
- Apply basic concepts of EV to design complete EV system
- Design EV system with various fundamental concepts

UNIT I INTRODUCTION TO EV SYSTEMS AND PARAMETERS

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters.

UNIT II EV AND ENERGY SOURCES

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

UNIT III EV PROPULSION AND DYNAMICS

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

UNIT IV FUEL CELLS

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

UNIT V BATTERY CHARGING AND CONTROL

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electromechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2005.
- 2. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc22_ee53/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

(20A03505) 3D PRINTING TECHNOLOGY (Open Elective-I)

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

Course Outcomes:

- Use techniques for processing of CAD models for rapid prototyping.
- Understand and apply fundamentals of rapid prototyping techniques.
- Use appropriate tooling for rapid prototyping process.
- Use rapid prototyping techniques for reverse engineering.
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes.

UNIT IIntroduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT IISolid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applications of Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT IIIPowder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IVRapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

UNIT VErrors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc. **Software:** Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Textbooks:

- 1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.
- 2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdfcompressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- https://www.youtube.com/watch?v=NkC8TNts4B4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A04505) DIGITAL ELECTRONICS (Open Elective Course- I)

Course Objectives:

- To provide the fundamental concepts associated with the digital logic and circuit design.
- To introduce the basic concepts and laws involved in the Boolean algebra and logic families and digital circuits.
- To familiarize with the different number systems, logic gates, and combinational and sequential circuits, memory elements utilized in the different digital circuits and systems.
- To introduce different digital logic families

Course Outcomes:

- Become familiar with the Boolean algebra, logic gates, logical variables, the truth table, number systems, codes, and their conversion from to others
- Learn the minimization techniques to simply the hardware requirements of digital circuits, implement it, design and apply for real time digital systems
- Understand the working mechanism and design guidelines of different combinational, sequential circuits, memory elements and their role in the digital system design.
- Understand different logic families and use the best combination of ICs during the design of a digital system

UNIT 1

DIGITAL FUNDAMENTALS: Number Systems - Decimal, binary, octal, Hexadecimal,1's and 2's complements,Codes - Binary, BCD, Excess 3, Gray, Alphanumeric codes, Booleantheorems. Logic gates: Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization.

UNIT II

COMBINATIONAL CIRCUITS: Half and Full Adders, Half and FullSubtractors, Binary Parallel Adder Carry look ahead Adder, BCD 'Adder, Multiplexer, Demultiplexer, MagniudeComparator, Decoder, Encoder, Priority Encoder.

UNIT III

SYNCHRONOUS SEQUENTIAL CIRCUITS: Flip flops - SR, JK, T, D, Master/Slave FF- operation and excitation tables, Triggering of FF, conversion of FF. Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.

UNIT IV

MEMORY DEVICES: Basic memory structure - ROM, PROM, EPROM, EEPROM, EAPROM, RAM, Static and dynamic RAM.Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Field Programmable Gate Arrays (FPGA).

UNIT V

Digital Logic Families: Logic levels, propagation delay, power dissipation, fan-out and fan-in, noise margin, RTL, TTL, ECL, CMOS.

Textbooks:

- 1. Modern Digital Electronics(Edition III) : R. P. Jarn; TMH
- 2. Digital Fundamentals: Thomas I. Floyd
- 3. Digital circuits and design: S. Salivahanan, and S. Anvzzhagan

References:

- 1. Digital Integrated Electronics: Taub & Schilling; MGH
- 2. Digital Design: Morris Mano; PHI.Course

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

L I I C 3 0 0 3

(20A05505a) JAVA PROGRAMMING (Open Elective Course – I)

Course Objectives:

- To understand object-oriented concepts and problem-solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

Course Outcomes:

- Solve real-world problems using OOP techniques.
- Apply code reusability through inheritance, packages and interfaces
- Solve problems using java collection framework and I/O classes.
- Develop applications by using parallel streams for better performance and develop applets for web applications.
- Build GUIs and handle events generated by user interactions and Use the JDBC API to access the database.

UNIT I Introduction

Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods

UNIT II Inheritance, Packages, Interfaces

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

UNIT III Exception handling, Stream based I/O

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built-in exceptions, creating own exception subclasses.

Stream based I/O (java.io) – The Stream Classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and Writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

UNIT IV Multithreading, The Collections Framework

Multithreading: The Java thread model, creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses-Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

UNIT VApplet, GUI Programming with Swings, Accessing Databases with JDBC

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem,

creating a main menu, show message dialog, show confirm dialog, show input dialog, show option dialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Textbooks:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Java How to Program, 10th Edition, Paul Dietel, Harvey Dietel, Pearson Education.

Reference Books:

- 1. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.
- 2. Core Java Volume 1 Fundamentals, Cay S. Horstmann, Pearson Education.
- 3. Java Programming for core and advanced learners, Sagayaraj, Dennis, Karthik andGajalakshmi, University Press
- 4. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 5. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 6. Programming in Java, S. Malhotra, S. Chaudhary, 2nd edition, Oxford Univ. Press.
- 7. Java Programming and Object-oriented Application Development, R.A. Johnson, Cengage Learning.

Online Learning Resources:

https://www.w3schools.com/java/java_oop.asp http://peterindia.net/JavaFiles.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC **B.Tech III-I Sem** 3 0 0 3

(20A05602T) ARTIFICIAL INTELLIGENCE **Open Elective Course - I**

Course Objectives:

This course is designed to:

- Introduce Artificial Intelligence
- Teach about the machine learning environment •
- Present the searching Technique for Problem Solving
- Introduce Natural Language Processing and Robotics

Course Outcomes:

After completion of the course, students will be able to

- Apply searching techniques for solving a problem
- Design Intelligent Agents
- Develop Natural Language Interface for Machines
- Design mini robots
- Summarize past, present and future of Artificial Intelligence

UNIT I Introduction

Introduction: What is AI, Foundations of AI, History of AI, The State of Art.

Intelligent Agents: Agents and Environments, Good Behavior: The Concept of Rationality, The Na Environments, The Structure of Agents.

UNIT II Solving Problems by searching Problem Solving Agents, Example problems, Searching for Solutions, Uninformed Search Stra Informed search strategies, Heuristic Functions, Beyond Classical Search: Local Search Algorithi Optimization Problems, Local Search in Continues Spaces, Searching with Nondeterministic A Searching with partial observations, online search agents and unknown environments.

UNIT III **Reinforcement Learning & Natural Language Processing** Lecture 8Hi Reinforcement Learning: Introduction, Passive Reinforcement Learning, Active Reinforcement Le Generalization in Reinforcement Learning, Policy Search, applications of RL

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Infor Extraction.

UNIT IV Natural Language for Communication Lecture 8 Hi Natural Language for Communication: Phrase structure grammars, Syntactic Analysis, Aug Grammars and semantic Interpretation, Machine Translation, Speech Recognition

Perception: Image Formation, Early Image Processing Operations, Object Recognition by appe Reconstructing the 3D World, Object Recognition from Structural information, Using Vision.

UNIT V **Robotics** Lecture 10F Robotics: Introduction, Robot Hardware, Robotic Perception, planning to move, planning ur movements, Moving, Robotic software architectures, application domains

Philosophical foundations: Weak AI, Strong AI, Ethics and Risks of AI, Agent Components, Architectures, Are we going in the right direction, What if AI does succeed.

Textbooks:

1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, I Education, 2019.

Lecture 9Hr

Lecture 9 H₁

Reference Books:

- 1. Nilsson, Nils J., and Nils Johan Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.
- 2. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting Education 27.1 (2009): 30-39.

Online Learning Resources:

http://peterindia.net/AILinks.html http://nptel.ac.in/courses/106106139/ https://nptel.ac.in/courses/106/105/106105152/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

3 0 0 3

(20A12502) MOBILE APPLICATION DEVELOPMENT USINGANDROID (Open Elective-I)

Course Objectives:

- Facilitate students to understand android SDK.
- Help students to gain a basic understanding of Android application development.
- Inculcate working knowledge of Android Studio development tool.

Course Outcomes:

- Identify various concepts of mobile programming that make it unique from programming for other platforms.
- Evaluate mobile applications on their design pros and cons.
- Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces.
- Develop mobile applications for the Android operating system that use basic and advanced phone features.
- Demonstrate the deployment of applications to the Android marketplace for distribution.

Introduction and Mobile User Interface Design

Introduction to Android: The Android Platform, Android SDK, Android Studio Installation, Android Installation, building you First Android application, Understanding Anatomy of Android Application, Android Manifest file.

UNIT II Activities, Intents and Android User Interface

Android Application Design Essentials: Anatomy of an Android applications, Android terminologies, Application Context, Activities, Services, Intents, Receiving and Broadcasting Intents, Android Manifest File and its common settings, Using Intent Filter, Permissions

UNIT III Advanced User Interface and Data Persistence

Android User Interface Design Essentials: User Interface Screen elements, Designing User Interfaces with Layouts, Drawing and Working with Animation.

UNIT IV

UNIT I

Android Services, Publishing Android Applications

Testing Android applications, Publishing Android application, Using Android preferences, Managing Application resources in a hierarchy, working with different types of resources.

UNIT V Android Databases

Using Common Android APIs: Using Android Data and Storage APIs, managing data using SQLite, Sharing Data between Applications with Content Providers, Using Android Networking APIs, Using Android Web APIs, Using Android Telephony APIs, Deploying Android Application to the World. **Textbooks:**

Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd ed. (2011).

2. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development," Wiley India, FirstEdition,2012.

Reference Books:

- 1. Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd
- 2. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd
- 3. Android Application Development All in one for Dummies by Barry Burd, Edition: I

Online Learning Resources:

1. https://developer.android.com/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A27505) COMPUTER APPLICATIONS IN FOOD TECHNOLOGY (Open Elective-1)

Course Objectives:

- To know different software and applications in food technology.
- To understand the Chemical kinetics in food processing, Microbial distraction in thermal processing of food.
- To acquire knowledge on computer aided manufacturing and control of food machinery, inventory control, process control.

Course Outcomes:

- Students will gain knowledge on software in food technology, data analysis, Chemical kinetics, microbial distortion in thermal process
- Use of linear regression in analyzing sensory data, application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants.

UNIT I

Introduction to various software and their applications in food technology. Application of MS Excel to solve the problems of Food Technology, SPSS and JMP for data analysis, Pro-Engineering for design, Lab VIEW and SCADA for process control.

UNIT II

Chemical kinetics in food processing: Determining rate constant of zero order reaction First order rate constant and half-life of reactions. Determining energy of activation of vitamin degradation during food storage Rates of Enzymes catalyzed reaction. Microbial distraction in thermal processing of food. Determining decimal reduction time from microbial survival data, Thermal resistance factor, Z-values in thermal processing of food. Sampling to ensure that a lot is not contaminated with more than a given percentage Statistical quality control. Probability of occurrence in normal distribution. Using binomial distribution to determine probability of occurrence. Probability of defective items in a sample obtained from large lot

UNIT III

Sensory evaluation of food Statistical descriptors of a population estimated from sensory data obtained from a sample Analysis of variance. One factor, completely randomized design For two factor design without replication. Use of linear regression in analyzing sensory data. Mechanical transport of liquid food. Measuring viscosity of liquid food using a capillary tube viscometer . Solving simultaneous equations in designing multiple effect evaporator while using matrix algebra available in excel.

UNIT IV

Familiarization with the application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants, stating from the receiving of raw material up to the storage & dispatch of finished product.

UNIT V

Basic Introduction to computer aided manufacturing. Application of computers, instrumentation and control of food machinery, inventory control, process control etc.

Recommended books:

- 1. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis by R. Paul Singh, AP.
- 2. Manuals of MS Office.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C

$\frac{1}{3}$ 0 0 3

(20A54501) OPTIMIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

This course enables the students to classify and formulate real-life problem for modeling as optimization problem, solving and applying for decision making.

Course Outcomes: Student will be able to

- formulate a linear programming problem and solve it by various methods.
- give an optimal solution in assignment jobs, give transportation of items from sources to destinations.
- identify strategies in a game for optimal profit.
- implement project planning.

UNIT I

Introduction to operational research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method.

UNIT II

Transportation problems- assignment problems-Game theory.

UNIT III

CPM and PERT –Network diagram-Events and activities-Project Planning-Reducing critical events and activities-Critical path calculations.

UNIT IV

Sequencing Problems-Replacement problems-Capital equipment- Discounting costs- Group replacement.

UNIT V

Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic inventory models- Single period inventory models with shortage cost.

Textbooks:

- 1. Operations Research, S.D. Sharma.
- 2. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 3. Operations Research, Nita H Shah, Ravi M Gor, Hardik Soni, PHI publishers

Reference Books:

- 1. Problems on Operations Research, Er. Prem kumargupta, Dr.D.S. Hira, Chand publishers
- 2. Operations Research, CB Gupta, PK Dwivedi, Sunil kumaryadav

Online Learning Resources:

https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L2slides.pdf https://slideplayer.com/slide/7790901/ https://www.ime.unicamp.br/~andreani/MS515/capitulo12.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A56501) MATERIALS CHARACTERIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

- To provide an exposure to different characterization techniques.
- To enlighten the basic principles and analysis of different spectroscopic techniques.
- To explain the basic principle of Scanning electron microscope along with its limitations and applications.
- To identify the Resolving power and Magnification of Transmission electron microscope and its applications.
- To educate the uses of advanced electric and magnetic instruments for characterization.

Course Outcomes: At the end of the course the student will be able

- To explain the structural analysis by X-ray diffraction.
- To understand the morphology of different materials using SEM and TEM.
- To recognize basic principles of various spectroscopic techniques.
- To study the electric and magnetic properties of the materials.
- To make out which technique can be used to analyse a material

UNIT I

Structure analysis by Powder X-Ray Diffraction: Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherrer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II

Microscopy technique -1 –Scanning Electron Microscopy (SEM)

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III

Microscopy Technique -2 - Transmission Electron Microscopy (TEM): Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy.

UNIT IV

Spectroscopy techniques – Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V

Electrical & Magnetic Characterization techniques: Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods – Yang

Leng – John Wiley & Sons (Asia) Pvt. Ltd. 2008

2. Handbook of Materials Characterization -by Sharma S. K. - Springer

References:

1. Fundamentals of Molecular Spectroscopy – IV Ed. – Colin Neville Banwell and Elaine M.

McCash, Tata McGraw-Hill, 2008.

2. Elements of X-ray diffraction - Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall, 2001

3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods-<u>Yang Leng</u>- John Wiley & Sons

4. Characterization of Materials 2nd Edition, 3 Volumes-Kaufmann E N -John Wiley (Bp)

5. Microstructural Characterization of Materials - David Brandon, Wayne D Kalpan, John Wiley

& Sons Ltd., 2008.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A51501) CHEMISTRY OF ENERGY MATERIALS (Open Elective- I)

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

Course Outcomes:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

UNIT I: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

UNIT II: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

UNIT III: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

UNITIV: Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

UNIT V: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

References:

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A02605) SMART ELECTRIC GRID (Open Elective Course-II)

Course Objectives:

- Understand recent trends in grids, smart grid architecture and technologies
- Analyze smart substations
- Apply the concepts to design smart transmission systems
- Apply the concepts to design smart distribution systems

Course Outcomes:

- Understand trends in Smart grids, needs and roles of Smart substations
- Design and Analyze Smart Transmission systems
- Design and Analyze Smart Distribution systems
- Analyze SCADA and DSCADA systems in practical working environment

UNIT I INTRODUCTION TO SMART GRID

Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions – Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid

UNIT II SMART GRID TECHNOLOGIES

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

UNIT III SMART SUBSTATIONS

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

UNIT IV SMART TRANSMISSION SYSTEMS

Energy Management systems, History, current technology, EMS for the smart grid, Synchro Phasor Measurement Units (PMUs), Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid

UNIT V SMART DISTRIBUTION SYSTEMS

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Textbooks:

- 1. Stuart Borlase, Smart Grids Infrastructure, Technology and Solutions, CRC Press, 1e, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley–IEEE Press, 2e, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2e, 2017.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2e, 2012.

Online Learning Resources:

1. <u>https://onlinecourses.nptel.ac.in/noc22_ee82/preview</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech III-II Sem** LTPC

3 0 0 3

(20A03605) INTRODCUTION TO ROBOTICS

Course Objectives:

- Learn the fundamental concepts of industrial robotic technology.
- Apply the basic mathematics to calculate kinematic and dynamic forces in robot manipulator. •
- Understand the robot controlling and programming methods.
- Describe concept of robot vision system

Course Outcomes:

After completing the course, the student will be able to,

- Explain fundamentals of Robots
- Apply kinematics and differential motions and velocities
- Demonstrate control of manipulators
- Understand robot vision
- Develop robot cell design and programming •

UNIT I Fundamentals of Robots

Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots. Introduction to matrix representation of a point in a space a vector in space, a frame in space, Homogeneous transformation matrices, representation of a pure translation, pure rotation about an axis.

UNIT II Kinematics, Differential motions and velocities of robot

Kinematics of robot: Forward and inverse kinematics of robots- forward and inverse kinematic equations for position and orientation, Denavit-Hartenberg(D-H) representation of forward kinematic equations of robots, the inverse kinematic of robots, degeneracy and dexterity, simple problems with D-H representation.

Differential motions and Velocities: Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame. Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

UNIT III Control of Manipulators

Open- and close-loop control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

UNIT IV Robot Vision

Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

UNIT V **Robot Cell Design and Programming**

Robot cell layouts-Robot centred cell, In-line robot cell, considerations in work cell design, work cell control, interlocks, error detection, work cell controller. methods of robot programming, WAIT, SIGNAL, and DELAY commands, Robotic languages, VAL system.

Textbooks:

- 1. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, NicholasG.Odrey, Industrial Robotics — Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

References:

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- **3.** Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.

Online Learning Resources:

https://nptel.ac.in/courses/108105088 https://nptel.ac.in/courses/108105063 https://nptel.ac.in/courses/108105062 https://nptel.ac.in/courses/112104288

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A0470605) SIGNAL PROCESSING (Open Elective Course –II)

Course objectives:

- Understand, represent and classify continuous time and discrete time signals and systems, together with the representation of LTI systems.
- Ability to represent continuous time signals (both periodic and non-periodic) in the time domain, sdomain and the frequency domain
- Understand the properties of analog filters, and have the ability to design Butterworth filters
- Understand and apply sampling theorem and convert a signal from continuous time to discrete time or from discrete time to continuous time (without loss of information)
- Able to represent the discrete time signal in the frequency domain
- Able to design FIR and IIR filters to meet given specifications

Course Outcomes:

- Understand and explain continuous time and discrete time signals and systems, in time and frequency domain
- Apply the concepts of signals and systems to obtain the desired parameter/ representation
- Analyse the given system and classify the system/arrive at a suitable conclusion
- Design analog/digital filters to meet given specifications
- Design and implement the analog filter using components/ suitable simulation tools
- Design and implement the digital filter using suitable simulation tools, and record the input and output of the filter for the given audio signal

UNIT I

Signal Definition, Signal Classification, System definition, System classification, for both continuous time and discrete time. Definition of LTI systems

UNIT II

Introduction to Fourier Transform, Fourier Series, Relating the Laplace Transform to Fourier Transform, Frequency response of continuous time systems

UNIT III

Frequency response of ideal analog filters, Salient features of Butterworth filters Design and implementation of Analog Butterworth filters to meet given specifications

UNIT IV

Sampling Theorem- Statement and proof, converting the analog signal to a digital signal. Practical sampling. The Discrete Fourier Transform, Properties of DFT. Comparing the frequency response of analog and digital systems.

UNIT V

Definition of FIR and IIR filters. Frequency response of ideal digital filters

Transforming the Analog Butterworth filter to the Digital IIR Filter using suitable mapping techniques, to meet given specifications. Design of FIR Filters using the Window technique, and the frequency sampling technique to meet given specifications Comparing the designed filter with the desired filter frequency response

Textbooks:

1. 'Signals and Systems', by Simon Haykin and Barry Van Veen, Wiley.

References:

- 1. 'Theory and Application of Digital Signal Processing', Rabiner and Gold
- 2. 'Signals and Systems', Schaum's Outline series
- 3. 'Digital Signal Processing', Schaum's Outline series

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech III-II Sem** LTPC

0 0 3 3

(20A04701b) INTRODUCTION TO INTERNET OF THINGS (Open Elective Course-II)

Course Objectives:

Students will understand the concepts of Internet of Things and can able to build IoT applications. **Course Outcomes:**

- Understand the concepts of Internet of Things •
- Identify hardware and software components of Internet of Things •
- Analyze basic communication protocols •
- Design IoT applications in different domain and be able to analyze their performance •

UNIT 1

Introduction to IoT: Architectural overview, Design principles and needed capabilities, IoT Applications, Sensing, Actuation, Basics of Networking, M2M and IoT Technology Fundamentals-Devices and gateways, Data management, Business processes in IoT, Role of cloud in IoT

UNIT II

Elements of IoT: Hardware components - computing (Arduino, Raspberry Pi), communication, Actuation, I/O interfaces Software Components- Programming APIs Sensing. (Using python/Arduino) for communication protocols-MQTT, Zigbee, Bluetooth, CoAP, UDP, TCP

UNIT III

Sensing and Actuation: Definition of Sensor, Sensor features, Resolution, Classes, Different types of sensors, Actuator, Different types of Actuators, purpose of Sensors and Actuators in IoT

UNIT IV

IoT Application Development: Solution frame work for IoT Applications-Implementation of Device integration, Data acquisition and Integration, Device data storage on cloud/local server, Authentication, authorization of Devices

UNIT V

IoT Case Studies: IoT Case studies and mini projects based on industrial Automation, Transportation, Agriculture, Healthcare, Home Automation.

Textbooks:

1. Vijay Madisetti, ArshdeepBahga, "Internet of Things a Hands-On-Approach", 2014.

References:

- 1. Dr SRN Reddy, RachitThukral and Manasi Mishra ," Introduction to Internet of Things": A practical Approach" ETI Labs
- 2. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill
- 3. Adrian McEwen, "Designing the Internet of Things", Wiley Publishers, 2013

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A05605a) PRINCIPLES OF OPERATING SYSTEMS (Open Elective Course – II)

Course Objectives:

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Expose the students with different techniques of handling deadlocks
- Provide good insight on various memory management techniques
- Explore the concept of file-system and its implementation issues

Course Outcomes:

- Demonstrate and understand of computer systems and operating systems functions
- Distinguish between process and thread and classify scheduling algorithms
- Solve synchronization and deadlock problems
- Compare various memory management schemes
- Explain file systems concepts and i/o management

UNIT I Introduction to Computer and Operating system

Computer Types, Functional Units, Basic Operational Concepts, Number Representation and Arithmetic Operations, Character Representation, Performance, Historical Perspective, Memory Locations and Addresses, Memory operations, Instructions and Instruction Sequencing, Addressing modes

Architecture Operating System Structure, Operations Process, Memory, Storage Management, Protection and Security Computing Environments OperatingSystem Services User Operating System Interface System Calls Types System Programs OSStructure OS Generation System Boot.

UNIT II Process, Threads and Scheduling

Process Concept Scheduling Operations on Processes Cooperating Processes Inter-ProcessCommunication Threads - Multithreading Models -Thread Libraries- Threading Issues – SchedulingCriteria Scheduling Algorithms Algorithm Evaluation.

UNIT III Process Synchronization and Deadlocks

The Critical-Section Problem Synchronization Hardware Mutex Locks -Semaphores Classic Problems of Synchronization Critical Regions Monitors Deadlocks SystemModel Deadlock Characterization Methods for Handling Deadlocks Deadlock PreventionDeadlock Avoidance Deadlock Detection Recovery from Deadlock.

UNIT IV Memory Management

Introduction - Swapping Contiguous Memory Allocation Paging Segmentation- Structure of thePage Table - Virtual Memory- Background Demand Paging Copy on Write Page ReplacementAllocation of Frames Thrashing.

UNIT V Input/ Output and Files

Overview of Mass Storage Structure - Disk Structure - Disk Scheduling and Management-File SystemInterface File Concept - Access Methods -Directory and Disk Structure- Directory Implementation - Allocation Methods- I/O Systems I/O Hardware- Application I/O Interface - Kernel I/O Subsystem.

Textbooks:

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill, 2012.
- 2. Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operating Systems Concepts, Ninth Edition, Wiley, 2012.

Reference Books:

- 1. William Stallings, Operating Systems: Internals and Design Principles, Ninth Edition, Prentice-Hall, 2018.
- 2. Andrew Tanenbaum, Modern Operating Systems, Third Edition, Prentice Hall, 2009.

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/ http://peterindia.net/OperatingSystems.html

Lecture 8Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

$\frac{1}{3}$ 0 0 3

(20A05605b) FOUNDATIONS OF MACHINE LEARNING Open Elective Course- II

Course Objectives:

- Acquire theoretical knowledge on setting hypothesis for pattern recognition.
- Apply suitable machine learning techniques for data handling and to gain knowledge from it.
- Evaluate the performance of algorithms and to provide solution for various real-world applications.

Course Outcomes (CO):

After completion of the course, students will be able to

- 1. Understand the characteristics of machine learning strategies.
- 2. Apply various supervised learning methods to appropriate problems.
- 3. Identify and integrate more than one technique to enhance the performance of learning.
- 4. Create probabilistic and unsupervised learning models for handling unknown pattern.
- 5. Analyse the co-occurrence of data to find interesting frequent patterns.
- 6. Pre-process the data before applying to any real-world problem and can evaluate its performance

UNIT IIntroduction to Machine LearningLecture 8HrsWhat is machine learning, learning associations, classification, regression, unsupervised learning,
reinforcement learning

Supervised Learning: learning a class from examples, learning multiple classes, model selection and generalization

UNIT IIParametric, Non-Parametric methodsLecture 9HrsParametric Methods:Introduction, maximum likelihood estimation, evaluating an estimator,

parametric classification, regression, model selection procedures

Nonparametric Methods: Introduction, nonparametric density estimation: histogram estimator, kernel estimator, k-nearest neighbour estimator

UNIT III Multivariate Methods Lecture 9Hrs

Multivariate Methods: Multivariate data, parameter estimation, estimation of missing values, multivariate normal distribution, multi variate classification

UNIT IV Dimensionality Reduction, Clustering Lecture 8Hrs

Dimensionality Reduction: Introduction, subset selection, principal component analysis, singular value decomposition and matrix factorization

Clustering: Mixture densities, k-means clustering, expectation-maximization algorithm, mixtures of latent variables

UNIT V Deep Learning

Deep Learning: Introduction, train multiple hidden layers, improving training convergence, regularization, convolution layers, tuning the network structure, learning sequences.

Textbooks:

- 1. <u>EthemAlpaydin</u>, Introduction to Machine Learning, Fourth Edition, MIT Press, Fourth Edition, 2020
- 2. MehryarMohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012

Reference Books:

- 1. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2019.
- Stephen Marsland, "Machine Learning An Algorithmic Perspective", 2nd Edition, CRC Press, 2015.

3. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014. Online Learning Resources:

- 1. <u>https://bloomberg.github.io/foml/</u>
- https://d1rkab7tlqy5f1.cloudfront.net/EWI/Over%20de%20faculteit/Afdelingen/Intelligent %20Systems/Pattern%20Recognition%20Laboratory/PR/Reading%20Group/Foundations _of_Machine_Learning.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (IT)– III-II Sem L T P C

3 0 0 3

(20A05605c) DATA ANALYTICS USING R (Open Elective-II)

Course Objectives:

- Facilitate students to understand R programming
- Help students to gain a basic understanding of Data Analytics
- Inculcate working knowledge of plotting

Course Outcomes:

- Identify and execute basic syntax and programs in R
- Perform the Matrix operations using R built in functions
- Apply nonnumeric values in vectors
- Create the list and data frames
- Exploit the graph using ggplot2.

UNIT I Introduction to R Programming

History and Overview of R- Basic Features of R-Design of the R System- Installation of R- Console and Editor Panes- Comments- Installing and Loading R Packages- Help Files and Function Documentation-Saving Work and Exiting R- Conventions- R for Basic Math- Arithmetic- Logarithms and Exponentials - E-Notation-Assigning Objects – Vectors-Creating a Vector-Sequences, Repetition, Sorting and Lengths – Sub setting and Element Extraction-Vector – Oriented Behavior.

UNIT II Matrices and Arrays

Defining a Matrix – Defining a Matrix- Filling Direction- Row and Column Bindings- Matrix Dimensions-Sub setting- Row, Column, and Diagonal Extractions- Omitting and Overwriting- Matrix Operations and Algebra- Matrix Transpose- Identity Matrix- Matrix Addition and Subtraction- Matrix Multiplication-Matrix Inversion-Multidimensional Arrays-Subsets, Extractions and Replacements.

UNIT III Non-Numeric values

Logical Values- Relational Operators- Characters- Creating a String- Concatenation- Escape Sequences-Substrings and Matching- Factors- Identifying Categories- Defining and Ordering Levels-Combining and Cutting.

UNIT IV Lists and Data frames

List of Objects-Component Access – Naming – Nesting-Data Frames-Adding Data Columns and Combining Data Frames – Logical Record Subsets – Some Special Values – Infinity – NaN – NA-NULL – Attributes – Object-Class-Is-Dot Object-Checking Functions-As-Dot Coercion Functions

UNIT V Basic Plotting

Using plot with Coordinate Vectors-Graphical Parameters-Automatic Plot Types-Title and Axis Labels-Color-Line and Point Appearances-Plotting Region Limits-Adding Points, Lines, and Text to an ExistingPlot-ggplot2 Package-Quick Plot with qplot-Setting Appearance Constants with Geoms—Reading and Writing Files- R-Ready Data Sets- Contributed Data Sets- Reading in External Data Files-Writing Out Data Files and Plots-AdHoc Object Read/Write Operations

Textbooks:

1. TilmanM.Davies, "TheBook of R-AFirstProgramming, Statistics" LibraryofCongress Cataloging-in-Publication Data, 2016.

Reference Books:

1. HadleyWickham,GarrettGrolemund,"R forDataScience",OreillyPublication,2017.

2. Roger D. Peng, "R Programming for Data Science" Lean Publishing, 2016.

3. StevenKeller, "RProgrammingforBeginners", CreateSpaceIndependentPublishingPlatform2016.

Online Learning Resources:

1. <u>https://www.coursera.org/learn/data-analysis-r</u>

2. https://www.careers360.com/courses-certifications/data-analysis-with-r-courses-brpg

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A27605) FOOD REFRIGERATION AND COLD CHAIN MANAGEMENT OPEN ELECTIVE II

Course Objectives:

- To know the equipment available to store perishable items for a long time
- To understand to increase the storage life of food items

Course Outcomes

By the end of the course, the students will

- Understand various principles and theories involved in refrigeration systems
- Understand the different equipment useful to store the food items for a long period.
- Understand how to increase the storage life of food items

UNIT I

Principles of refrigeration: Definition, background with second law of thermodynamics, unit of refrigerating capacity, coefficient of performance; Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization; Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures;

UNIT II

Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression; Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry vs wet compression, throttling vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling;

UNIT III

Liquid-vapour regenerative heat exchanger for vapour compression system, effect of suction vapour super heat and liquid sub cooling, actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine, Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; Azeotropes; Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;

UNIT IV

Ice manufacture, principles and systems of ice production, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice; Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations; Refrigerated transport: Handling and distribution, cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display;

UNIT V

Air-conditioning: Meaning, factors affecting comfort air-conditioning, classification, sensible heat factor, industrial air-conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air-conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air-conditioning systems; humidifiers and dehumidifiers; Cooling load calculations: Load sources, product cooling, conducted heat, convicted heat, internal heat sources, heat of respiration, peak load; etc.

Textbooks:

1. Arora, C. P. "Refrigeration and Air Conditioning". Tata MC Graw Hill Publishing Co.Ltd., New Delhi. 1993.

References:

1. Adithan, M. and Laroiya, S. C. "Practical Refrigeration and Air Conditioning". Wiley Estern Ltd., New Delhi 1991

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

3 0 0 3

(20A54701) WAVELET TRANSFORMS AND ITS APPLICATIONS (Open Elective-II)

Course Objectives:

This course provides the students to understand Wavelet transforms and its applications.

Course Outcomes:

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

UNIT I Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems -Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis -The Discrete Wavelet Transform the Discrete-Time and Continuous Wavelet Transforms.

UNIT II A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT III Filter Banks and the Discrete Wavelet Transform

Analysis - From Fine Scale to Coarse Scale- Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients -Lattices and Lifting - Different Points of View.

UNIT IV Time-Frequency and Complexity

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Textbooks:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

Reference Books:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

Online Learning Resources:

https://www.slideshare.net/RajEndiran1/introduction-to-wavelet-transform-51504915

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A56701) PHYSICS OF ELECTRONIC MATERIALS AND DEVICES (Open Elective-II)

Course Objectives:

- To impart the fundamental knowledge on various materials, their properties and applications.
- To provide insight into various semiconducting materials, and their properties.
- To enlighten the characteristic behavior of various semiconductor devices.
- To provide the basics of dielectric and piezoelectric materials and their properties.
- To explain different categories of magnetic materials, mechanism and their advanced applications.

Course Outcome: At the end of the course the student will be able

- To understand the fundamentals of various materials.
- To exploit the physics of semiconducting materials
- To familiarize with the working principles of semiconductor-based devices.
- To understand the behavior of dielectric and piezoelectric materials.
- To identify the magnetic materials and their advanced applications.

UNIT I Fundamentals of Materials Science

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. Basic idea of point, line and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RT and glow discharge).

UNIT II Semiconductors

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor devices

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Construction and working principles of: Light emitting diodes, Heterojunctions, Transistors, FET and MOSFETs.

UNIT IV Dielectric Materials and their applications:

Introduction, Dielectric properties, Electronic polarizability and susceptibility, Dielectric constant and frequency dependence of polarization, Dielectric strength and dielectric loss, Piezoelectric properties.

UNIT V Magnetic Materials and their applications

Introduction, Magnetism & various contributions to para and dia magnetism, Ferro and Ferri magnetism and ferrites, Concepts of Spin waves and Magnons, Anti-ferromagnetism, Domains and domain walls, Coercive force, Hysteresis, Nano-magnetism, Super-paramagnetism – Properties and applications.

Textbooks

- 1. Principles of Electronic Materials and Devices- S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd., 3rd edition, 2007.
- 2. Electronic Components and Materials- Grover and Jamwal, Dhanpat Rai and Co.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning, 6th edition
- 2. Electronic Materials Science- Eugene A. Irene, , Wiley, 2005
- 3. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd., , 2nd Edition,2011
- 4. A First Course In Material Science- by Raghvan, McGraw Hill Pub.
- 5. The Science and Engineering of materials- Donald R.Askeland, Chapman& Hall Pub.
- 6. Electrical Engineering Materials-by A.J. Dekker, PHI Pub

NPTEL courses links

- 2. <u>https://nptel.ac.in/courses/113/106/113106062/</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>
- 4. <u>https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-mm07</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C

3 0 0 3

(20A51701) CHEMISTRY OF POLYMERS AND ITS APPLICATIONS

Course Objectives:

- To understand the basic principles of polymers
- To synthesize the different polymeric materials and their characterization by various instrumental methods.
- To impart knowledge to the students about fundamental concepts of Hydro gels of polymer networks, surface phenomenon by micelles
- To enumerate the applications of polymers in engineering

Course Outcome

- At the end of the course, the student will be able to:
- Understand the state of art synthesis of Polymeric materials
- Understand the hydro gels preparation, properties and applications in drug delivery system.
- Characterize polymers materials using IR, NMR, XRD.
- Analyze surface phenomenon fo micelles and characterise using photoelectron spectroscopy, ESCA and Auger spectroscopy

UNIT I : Polymers-Basics and Characterization

Basic concepts: monomers, repeat units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: condensation, addition, radical chain, ionic and coordination and copolymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution Measurement of molecular weight: end group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Unit II : Synthetic Polymers

Addition and condensation polymerization processes – Bulk, Solution, Suspension and Emulsion polymerization.

Preparation and significance, classification of polymers based on physical properties, Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications.

Preparation of Polymers based on different types of monomers, Olefin polymers, Diene polymers, nylons, Urea - formaldehyde, phenol - formaldehyde and melamine Epoxy and Ion exchange resins. Characterization of polymers by IR, NMR, XRD.

UNIT III : Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEAK. Learning Outcomes:

UNIT IV: Hydrogels of Polymer networks and Drug delivery

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Introduction to drug systems including, drug development, regulation, absorption and disposition, routes of administration and dosage forms. Advanced drug delivery systems and controlled release.

UNIT V : Surface phenomena

Surface tension, adsorption on solids, electrical phenomena at interfaces including electrokinetics, micelles, reverse micelles, solubilization. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

References :

- 1. A Text book of Polymer science, Billmayer
- 2. Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
- 3. Advanced Organic Chemistry, B.Miller, Prentice Hall
- Polymer Chemistry G.S.Mishra
 Polymer Chemistry Gowarikar

- Physical Chemistry –Galston
 Drug Delivery- Ashim K. Misra

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A02704) IoT APPLICATIONS IN ELECTRICAL ENGINEERING (Open Elective Course – III)

Course Objectives:

- Understand basics of Internet of Things and Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- Analyze motion less and motion detectors in IoT applications
- Understand about Analyze applications of IoT in smart grid
- Apply the concept of Internet of Energy for various applications

Course Outcomes:

- Understand the concept of IoT in Electrical Engineering
- Analyze various types of motionless sensors and various types of motion detectors
- Apply various applications of IoT in smart grid
- Design future working environment with Energy internet

UNIT I SENSORS

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

UNIT II OCCUPANCY AND MOTION DETECTORS

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

UNIT III MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

UNIT IV IoT FOR SMART GRID

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

UNIT V INTERNET of ENERGY (IOE)

Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid

Textbooks:

- 1. Jon S. Wilson, Sensor Technology Hand book, Newnes Publisher, 2004
- 2. Tai Ran Hsu, MEMS and Microsystems: Design and manufacture, 1st Edition, Mc Grawhill Education, 2017
- Ersan Kabalci and Yasin Kabalci, From Smart grid to Internet of Energy, 1st Edition, Academic Press, 2019

Reference Books:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, Energy Harvesting Systems for IoT Applications: Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, Internet of Things, Wiley, 2019

Online Learning Resources:

1.https://onlinecourses.nptel.ac.in/noc22_cs96/preview

- 2. https://nptel.ac.in/courses/108108123
- 3. https://nptel.ac.in/courses/108108179

AWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech IV-I Sem** LTPC

3 0 0 3

(20A03704)PRODUCT DESIGN AND DEVELOPMENT

Course Objectives:

- To Design products creatively while applying engineering design principles.
- To Apply principles of human factors, ethics and environmental factors in product design. •
- To Work in groups or individually in their pursuit of innovative product design. •
- To implement value design for optimum product cost.

Course Outcomes: After successful completion of the course, the student will be able to

- Apply knowledge of basic science and engineering fundamentals
- Undertake problem identification, formulation and solution
- Understanding of the principles of sustainable design and development
- Understanding of professional and ethical responsibilities and commitment to them

UNIT I Product Development Process

General problem-solving process - Flow of Work during the process of designing - Activity Planning Timing and scheduling, Planning Project and Product Costs - Effective Organization Structures -Interdisciplinary Cooperation, Leadership and Team behaviour.

UNIT II Task Clarification

Importance of Task Clarification - Setting up a requirements list - Contents, Format, Identifying the requirements, refining and extending the requirements, Compiling the requirements list, Examples, Using requirements lists - Updating, Partial requirements lists, Further uses - Practical applications of requirements lists.

UNIT III **Conceptual Design**

Steps in Conceptual Design. Abstracting to identify the essential problems - Aim of Abstraction, Broadening the problem. Formulation, Identifying the essential problems from the requirements list, establishing functions structures, Overall function, Breaking a function down into sub-functions. Developing working structures - Searching for working principles, Combining Working Principles, Selecting Working Structures, Practical Application of working structures. Developing Concepts -Firming up into principle solution variants, Evaluating principle solution variants, Practical Applications of working structures. Examples of Conceptual Design - One Handed Household Water Mixing Tap, Impulse - Loading Test Rig.

UNIT IV **Embodiment Design**

Steps of Embodiment Design, Checklist for Embodiment Design Basic rules of Embodiment Design Principles of Embodiment Design - Principles of Force Transformations, Principles of Division of Tasks, Principles of Self-Help, Principles of Stability and Bi-Stability, Principles of Fault-Free Design Guide for Embodiment Design - General Considerations, Design to allow for expansion, Design to allow for creep and relaxation, Design against Corrosion, Design to minimize wear, Design to Ergonomics, Design for Aesthetics, Design for Production, Design for Assembly, Design for Maintenance, Design for Recycling, Design for Minimum risk, Design to standards. Evaluation of Embodiment Designs.

UNIT V Mechanical Connections, Mechatronics AndAdaptronics:

Mechanical Connections - General functions and General Behaviour, Material connections, From Connections, Force connections, Applications. Mechatronics - General Architecture and Terminology, Goals and Limitations, Development of Mechatronic Solution, Examples. Adaptronics -Fundamentals and Terminology, Goals and Limitations, Development of Adaptronics Solutions, Examples.

Textbooks:

1. G.Paul; W. Beitzetal, Engineering Design, Springer International Education, 2010.

2. Kevin Otto: K. Wood, Product Design And Development, Pearson Education, 2013. **References:**

- 1. Kenith B. Kahu, Product Planning Essentials, Yes dee Publishing, 2011.
- 2. K.T. Ulrich, Product Design and Development, TMH Publishers, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112107217
- https://nptel.ac.in/courses/112104230
- https://www.youtube.com/watch?v=mvaqZAFdL6U
- https://nptel.ac.in/courses/107103082
- https://quizxp.com/nptel-product-design-and-manufacturing-assignment-5/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A04704) ELECTRONIC SENSORS (Open Elective Course –III)

Course Objectives:

- Learn the characterization of sensors.
- Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- Understand the concepts of Electro analytic and smart sensors
- Able to use sensors in different applications

Course Outcomes:

- Learn about sensor Principle, Classification and Characterization.
- Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- Understand the basic concepts of Smart Sensors
- Design a system with sensors

UNIT I

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors

UNIT II

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor ,Dielectric Constant and Refractive Index thermo sensors, Helium Low Temperature Thermometer ,Nuclear Thermometer ,Magnetic Thermometer ,Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

UNIT III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors,

Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, Xray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen

Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters,

Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation Sensors –Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing – Sensors for environmental Monitoring

Textbooks:

- 1. "Sensors and Transducers D. Patranabis" PHI Learning Private Limited., 2003.
- 2. Introduction to sensors- John veteline, aravindraghu, CRC press, 2011

References:

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villeyvaltokari, 1st edition, maker media,2014.
- 3. Sensors handbook- Sabriesoloman, 2nd Ed. TMH, 2009

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech IV-I Sem** LTPC

3 0 0 3

(20A05704a) WEB TECHNOLOGIES (Open Elective-III)

Course Objectives:

The course is designed to Introduce the key technologies that have been developed as part of the birth and maturation of the World Wide Web.

Course Outcomes:

- Understand the Web essentials. •
- Develop web pages using XHTML •
- Apply style to web pages using CSS •
- Write scripts for client side
- Develop and transform XML documents.

UNIT I Web Essentials: Clients, Servers, and Communication

The Internet, Basic Internet protocols, WWW, HTTP request message, HTTP response message, Web clients, Web Servers, Case study.

UNIT II Markup Languages: XHTML 1.0

An introduction to HTML, Basic XHTML syntax and semantics, fundamental HTML elements, Relative URLs, Lists, Tables, Frames, Forms, Defining XHTML's abstract syntax, Creating HTML documents.

UNIT III Cascading Style Sheets

Introduction, features, core syntax, style sheets and HTML, style rule cascading and inheritance, text properties, Box model, normal flow box layout, beyond the normal flow, lists, tables, cursor styles.

UNIT IV Client-side programming: JavaScript

Basic syntax, variables and data types, statements, operators, literals, functions, objects, Arrays, built-in objects, JavaScript debuggers.

UNIT V **Representing Web Data: XML**

Documents and vocabularies, Versions and declaration, Namespaces, Ajax, DOM and SAX parsers, transforming XML documents, XPath, XSLT, Displaying XML documents in Web browsers.

Textbooks:

1. J.C. Jackson, Web technologies: A computer science perspective, Pearson.

Reference Books:

- 1. Sebesta, Programming world wide web, Pearson.
- 2. Dietel and Nieto, Internet and World Wide Web How to program, Pearson Education
- 3. Chris Bates, Web Programming, building internet applications, 2nd edition, WILEY, Dreamtech

Online Learning Resources:

http://getbootstrap.com/ https://www.w3schools.com/whatis/ https://nptel.ac.in/courses/106105084

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech IV-I Sem** LTPC

3 0 0 3

(20A05704b) VR & AR FOR ENGINEERS (Open Elective Course – III)

Course Objectives:

- Introduce to the design of visualization tools •
- Demonstrate Virtual reality
- Learn Virtual reality animation and 3D Art optimization •
- Understand the foundational principles describing how hardware, computer vision algorithms function
- Explore the history of spatial computing and design interactions •

Course Outcomes:

- Apply VR/MR/AR in various fields in industry •
- Design Data visualization tools
- Design audio and video interaction paradigms
- Apply technical and creative approaches to make successful applications and experiences. •
- Explain how the humans interact with computers •

UNIT I

Computer generated worlds: what is augmented reality? what is virtual reality?

Understanding virtual space: defining visual space and content, defining position and orientation in three dimensions, navigation

The Mechanics of Sight: the visual path way, spatial vision, and Depth Cues.

Component Technologies of Head mounted Displays: Display fundamentals, related terminology and concepts, optical Architectures.

UNIT II

Augmented Displays: Binocular augmenting displays, Monocular augmenting displays.

Fully immersive Displays: PC-Console driven displays, smartphone based displays, CAVES and Walls, Hemispheres and Domes.

The Mechanics of hearing: Defining sound, the auditory pathway, sound cues and localization, the vestibular system.

Audio displays: Conventional audio

UNIT III

The Mechanics of Feeling: The Science of feeling, Anatomy and Composition of the skin.

Tactile and force feedback Devices: Haptic illusions, tactile feedback devices, Force feedback devices.

Sensors for tracking Position, and orientation and motion: introduction to sensor technologies, optical trackers, beacon trackers, electromagnetic trackers, inertial sensors, acoustic sensors.

Devices to enable navigation and interaction: 2D vs 3D interaction and navigation, the importance of a manual interface, hand and gesture tracking, whole body tracking, gaming and entertainment interfaces, navigating with your mind.

UNIT IV

Gaming and Entertainment: Virtual reality and the arts, gaming, immersive video/ cinematic virtual reality.

Architecture and Construction: Artificial spaces, architectural design: Manage group architectures, Construction management, real estate sales applications, architectural acoustics.

Science and engineering: Simulate and innovate, naval architecture and marine engineering, automotive engineering, aerospace engineering, nuclear engineering and manufacturing.

Health and medicine: advancing the field of medicine, training applications, treatment applications.

UNIT V

Aerospace and Defence: Flight simulation and training, mission planning and rehearsal, dismounted soldier situational awareness, advanced cockpit avionics, space operations.

Education: Tangible skills education, theory, knowledge acquisition and concept formation.

Information control and big data visualization: What is big data?, big data analytics and human vision.

Telerobotics and Telepresence: Defining Telerobotics and Telepresence, space applications and robonaut, undersea applications, Terrestrial and airborne applications.

Textbooks:

1. Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

Reference Books:

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented& Virtual Realities", O'REILLY

Online Learning Resources:

- 1. https://www.coursera.org/learn/intro-augmented-virtual-mixed-extended-reality-technologies-applications-issues
- 2. https://www.coursera.org/learn/ar

Lecture 8Hrs

Lecture 9Hrs

(20A05403T) SOFTWARE ENGINEERING (Open Elective Course – III)

Course Objectives:

- To learn the basic concepts of software engineering and life cycle models
- To explore the issues in software requirements specification and enable to write SRS documents for software development problems
- To elucidate the basic concepts of software design and enable to carry out procedural and object oriented design of software development problems
- To understand the basic concepts of black box and white box software testing and enable to design test cases for unit, integration, and system testing
- To reveal the basic concepts in software project management

Course Outcomes (CO):

After completion of the course, students will be able to

- Obtain basic software life cycle activity skills.
- Design software requirements specifications for given problems.
- Implement structure, object oriented analysis and design for given problems.
- Design test cases for given problems.
- Apply quality management concepts at the application level.

UNIT - I Basic concepts in software engineering and software Lecture 8Hrs project management

Basic concepts: abstraction versus decomposition, evolution of software engineering techniques, Software development life cycle (SDLC) models: Iterative waterfall model, Prototype model, Evolutionary model, Spiral model, RAD model, Agile models, software project management: project planning, project estimation, COCOMO, Halstead's Software Science, project scheduling, staffing, Organization and team structure, risk management, configuration management.

UNIT - II Requirements analysis and specification

The nature of software, The Unique nature of Webapps, Software Myths, Requirements gathering and analysis, software requirements specification, Traceability, Characteristics of a Good SRS Document, IEEE 830 guidelines, representing complex requirements using decision tables and decision trees, overview of formal system development techniques, axiomatic specification, algebraic specification.

ÚNIT - III Software Design

Good Software Design, Cohesion and coupling, Control Hierarchy: Layering, Control Abstraction, Depth and width, Fan-out, Fan-in, Software design approaches, object oriented vs. function oriented design. Overview of SA/SD methodology, structured analysis, Data flow diagram, Extending DFD technique to real life systems, Basic Object oriented concepts, UML Diagrams, Structured design, Detailed design, Design review, Characteristics of a good user interface, User Guidance and Online Help, Mode-based vs Mode-less Interface, Types of user interfaces, Component-based GUI development, User interface design methodology: GUI design methodology.

UNIT - IV **Coding and Testing** Lecture 9Hrs Coding standards and guidelines, code review, software documentation, Testing, Black Box Testing, White Box Testing, debugging, integration testing, Program Analysis Tools, system testing, performance testing, regression testing, Testing Object Oriented Programs.

UNIT - V **Software quality, reliability, and other issues** Lecture 9Hrs Software reliability, Statistical testing, Software quality and management, ISO 9000, SEI capability maturity model (CMM), Personal software process (PSP), Six sigma, Software quality metrics, CASE and its scope, CASE environment, CASE support in software life cycle, Characteristics of software maintenance, Software reverse engineering, Software maintenance processes model, Estimation maintenance cost. Basic issues in any reuse program, Reuse approach, Reuse at organization level.

Textbooks:

- 1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.
- 2. Pressman R, "Software Engineering- Practioner Approach", McGraw Hill.

Reference Books:

- 1. Somerville, "Software Engineering", Pearson 2.
- 2. Richard Fairley, "Software Engineering Concepts", Tata McGraw Hill.
- 3. JalotePankaj, "An integrated approach to Software Engineering", Narosa

Online Learning Resources:

https://nptel.ac.in/courses/106/105/106105182/ http://peterindia.net/SoftwareDevelopment.html

(20A27704) HUMAN NUTRITION (OPEN ELECTIVE-III)

Course Objectives:

- To get knowledge on Concepts and content of nutrition source and metabolic functions.
- To know about Balanced diets for various groups; Diets and disorders, recommended dietary allowances
- To learn about Epidemiology of under nutrition and over nutrition.
- To understand Nutrition and immunity.

Course Outcomes:

- To study the Salient features of Concepts and content of nutrition, Malnutrition, Nutrition education
- Assessment of nutritional status, disorders Food fad and faddism.

UNITI

Concepts and content of nutrition: Nutrition agencies; Nutrition of community; Nutritional policies and their implementation; Metabolic function of nutrients. Nutrients: Sources, functions, digestion, absorption, assimilation and transport of carbohydrates, proteins and fats in human beings;

UNITII

Water and energy balance: Water intake and losses; Basal metabolism- BMR; Body surface area and factors affecting BMR Formulation of diets: Classification of balanced diet; Balanced diets for various groups; Diets and disorders. Recommended dietary allowances (RDA); For various age group; According physiological status; Athletic and sports man; Geriatric persons

UNITIII

Malnutrition: Type of Malnutrition; Multi-factorial causes; Epidemiology of under nutrition and over nutrition; Nutrition and immunity.

UNITIV

Nutrition education Assessment of nutritional status: Diet surveys; Anthropometry; Clinical examination; Biochemical assessment; Additional medical information

UNIT V

Blood constituents; Hormone types; Miscellaneous disorders Food fad and faddism. Potentially toxic substances in human food.

Textbooks:

- 1. Swaminathan M, Advanced Text Book on Food & Nutrition (Volume I and II) , The Bangalore Printing and Publishing Co.Ltd, Bangalore. 2006
- 2. Stewart Truswell, ABC of Nutrition (4th edition), BMJ Publishing Group 2003, ISBN 0727916645.
- 3. Martin Eastwood, Principles of Human Nutrition, Blackwell Publishing, Boca Rotan

Reference:

- 1. Mike Lean and E. Combet ,Barasi's Human Nutrition A Health Perspective , Second Edition CRC Press, London
- 2. Introduction to Human Nutrition, Micheal J. G., Susan A.L. Aedin C. and Hester H.V, Wiley-Blackwell Publication, UK 2009, ISBN 9781405168076
- 3. Bogert L.J., Goerge M.B, Doris H.C., Nutrition and Physical Fitness, W.B. Saunders Company, Toronto, Canada

(20A54702) NUMERICAL METHODS FOR ENGINEERS (OPEN ELECTIVE-III)

Course Objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

Course Outcomes:

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

UNIT I Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

UNIT II Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

UNIT III Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae Gauss forward and backward formula, Stirling'sformula, Bessel's formula

UNIT IV Numerical Integration

Numerical Integration: Trapezoidal rule - Simpson's 1/3 Rule - Simpson's 3/8 Rule

UNIT VSolution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

https://slideplayer.com/slide/8588078/

(20A56702) SENSORS AND ACTUATORS FOR ENGINEERING APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To provide exposure to various kinds of sensors and actuators and their engineering applications.
- To impart knowledge on the basic laws and phenomenon behind the working of sensors and actuators
- To enlighten the operating principles of various sensors and actuators
- To educate the fabrication of sensors
- To identify the required sensor and actuator for interdisciplinary application

Course Outcomes:

- To recognize the need of sensors and actuators
- To understand working principles of various sensors and actuators
- To identify different type of sensors and actuators used in real life applications
- To exploit basics in common methods for converting a physical parameter into an electrical quantity
- To make use of sensors and actuators for different applications

UNIT I Introduction to Sensors and Actuators

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Materials used and their fabrication process: Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Hydraulic, Pneumatic, Mechanical, Electrical, Magnetic, Electromagnetic, piezo-electric and piezo-resistive actuators, Simple applications of Actuators.

UNIT II Temperature and Mechanical Sensors

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermoresistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermoelectric sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: strain gauges, tactile sensors, Pressure sensors: semiconductor, piezoresistive, capacitive, VRP.

UNIT III Optical and Acoustic Sensors

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo-resistors based sensors, Photomultipliers, Infrared sensors: thermal, PIR, thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones.

UNIT IV Magnetic, Electromagnetic Sensors and Actuators

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magneto-strictive sensors and actuators, Voice coil actuators (speakers and speaker-like actuators).

UNIT V Chemical and Radiation Sensors

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Geiger-Mueller counters, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.
- 5. Principles of Industrial Instrumentation By D. Patranabhis

NPTEL courses links

https://onlinecourses.nptel.ac.in/noc21_ee32/preview

3 0 0 3

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotechnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, coprecipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

References:

- 1. Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 3. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

(20A02705) RENEWABLE ENERGY SYSTEMS (Open Elective Course – IV)

Course Objectives:

- Understand various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Analyze solar thermal and solar PV systems
- Understand the concept of geothermal energy and its applications, biomass energy, the concept of Ocean energy and fuel cells.

Course Outcomes:

- Understand various alternate sources of energy for different suitable application requirements
- Understand the concepts of solar energy generation strategies and wind energy system
- Analyze Solar and Wind energy systems
- Understand the basics of Geothermal Energy Systems, various diversified energy scenarios of ocean, biomass and fuel cells

UNIT I SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV ENERGY SYSTEMS

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

UNIT III WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; windmill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

UNIT IV GEOTHERMAL ENERGY

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT V MISCELLANEOUS ENERGY TECHNOLOGIES

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration **Fuel cell**: Principle of working of various types of fuel cells and their working, performance and limitations.

Textbooks:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

Reference Books:

- 1. S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 2. B H Khan , "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

(20A03705) INTRODUCTION TO COMPOSITE MATERIALS (Open Elective-IV)

Course Objectives:

- Introduce composite materials and their applications.
- Build proper background for stress analysis in the design of composite structures.
- Familiarize various properties of composite materials.
- Focus on biodegradable composites.

Course Outcomes:

- Identify the practical applications of composites. (L3)
- Identify the polymer matrix composites. (L3)
- Classify of bio- degradable composites. (L2)
- Outline the various types of ceramic matrix materials. (L2)

UNIT I Introduction to composites

Fundamentals of composites – Definition – classification– based on Matrix – based on structure – Advantages and applications of composites - Reinforcement – whiskers – glass fiber – carbon fiber - Aramid fiber – ceramic fiber – Properties and applications.

UNIT II Polymer matrix composites

Polymers - Polymer matrix materials – PMC processes - hand layup processes – spray up processes – resin transfer moulding – Pultrusion – Filament winding – Auto clave based methods - Injection moulding – sheet moulding compound – properties and applications of PMCs.

UNIT III Metal matrix composites

Metals - types of metal matrix composites – Metallic Matrices. Processing of MMC – Liquid state processes – solid state processes – In-situ processes. Properties and applications of MMCs.

UNIT IV Ceramic matrix composites

Ceramic matrix materials – properties – processing of CMCs –Sintering - Hot pressing – Infiltration – Lanxide process – Insitu chemical reaction techniques – solgel polymer pyrolsis –SHS - Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Properties and Applications of CCMs.

UNIT VAdvances & Applications of composites

Advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Properties and applications of Carbon-carbon composites. Composites for aerospace applications.Bio degradability, introduction of bio composites, classification, processing of bio composites, applications of bio composites - Mechanical, Biomedical, automobile Engineering.

Textbooks:

- 1. Chawla K.K, Composite materials, 2/e, Springer Verlag, 1998.
- 2. Mathews F.L. and Rawlings R.D., Chapman and Hall, Composite Materials: Engineering and Science, 1/e, England, 1994.

Reference Books:

- 1. H K Shivanand, B V Babu Kiran, Composite Materials, ASIAN BOOKS, 2011.
- 2. A.B. Strong, Fundamentals of Composite Manufacturing, SME Publications, 1989.
- 3. S.C. Sharma, Composite materials, Narosa Publications, 2000.
- 4. Maureen Mitton, Hand Book of Bio plastics & Bio composites for Engineering applications, John Wiley publications, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112104229
- https://nptel.ac.in/courses/112104168
- https://nptel.ac.in/courses/101104010
- https://nptel.ac.in/courses/105108124
- https://nptel.ac.in/courses/112104221

(20A04705) MICROCONTROLLERS & APPLICATIONS (Open Elective Course –IV)

Course Objectives:

- Describe the Architecture of 8051 Microcontroller and Interfacing of 8051 to external memory.
- Write 8051 Assembly level programs using 8051 instruction set.
- Describe the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051.

Course Outcomes:

- Understand the importance of Microcontroller and Acquire the knowledge of Architecture of 8051 Microcontroller.
- Apply and Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to using 8051 I/O ports.
- Develop the 8051 Assembly level programs using 8051 Instruction set
- Design the Interrupt system, operation of Timers/Counters and Serial port of 8051

UNIT 18051 Microcontroller:

Microprocessor Vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture- Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

UNIT II

Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples to use these instructions.

UNIT III

8051 Stack, Stack and Subroutine instructions. Simple Assembly language program examples to use subroutine instructions.8051 Timers and Counters – Operation and Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode- 2 on a port pin.

UNIT IV

8051 Serial Communication- Basics of Serial Data Communication, RS- 232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.8051 Interrupts. 8051 Assembly language programming to generate an external interrupt using a switch.

UNIT V

8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Interfacing with relays and opto isolators, Stepper Motor Interfacing, DC motor interfacing, PWM generation using 8051. Learning Outcomes:

Textbooks:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", PHI, 2006 / Pearson, 2006.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning.

References:

- 1. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.

$\frac{1}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{3}$

(20A05705a) CYBER SECURITY (Open Elective-IV)

Course Objectives:

The course is designed to provide awareness on different cyber crimes, cyber offenses, tools and methods used in cybercrime.

Course Outcomes:

- Classify the cybercrimes and understand theIndian ITA 2000
- Analyse the vulnerabilities in any computing system and find the solutions
- Predict the security threats of the future
- Investigate the protection mechanisms
- Design security solutions for organizations

UNIT I Introduction to Cybercrime

Introduction, Cybercrime, and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, And Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

UNIT II Cyber Offenses: How Criminals Plan Them

Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber Cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing

UNIT III Cybercrime: Mobile and Wireless Devices

Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies an Measures in Mobile Computing Era, Laptops.

UNIT IV Tools and Methods Used in Cybercrime

Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horse and Backdoors, Steganography, DoS and DDoS attacks, SQL Injection, Buffer Overflow.

UNIT V Cyber Security: Organizational Implications

Introduction, Cost of Cybercrimes and IPR issues, Web threats for Organizations, Security and Privacy Implications, Social media marketing: Security Risks and Perils for Organizations, Social Computing and the associated challenges for Organizations.

Textbooks:

1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA.

Reference Books:

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J.DavidIrwin.CRC Press T&F Group

Online Learning Resources:

http://nptel.ac.in/courses/106105031/40 http://nptel.ac.in/courses/106105031/39 http://nptel.ac.in/courses/106105031/38

(20A05705b) INTRODUCTION TO FULL STACK DEVELOPMENT (Open Elective Course – IV)

Course Objectives:

- To build foundation on HTML this will help developer to use HTML concepts for building responsive web application.
- To Develop HTML based Single application for Browsers.
- To Understand OOPs concepts and its applications by building competency in object –oriented Programming.
- To implement frontend and backend scenarios using Web Sockets.
- To become proficient in Bootstrap concepts.

Course Outcomes:

- Able to how to program a browser like using JavaScript, jQuery, Angular, or Vue.
- Distinguishing trends in multi-device implementation.
- Create webpages that function using external data.
- Disambiguate the different structures that a no SQL database may represent.
- Derive information from data and implement data into applications.

UNIT I

e The Modern Web: Rise of the Web, Mobile Web, The State of HTML, Applications vs Web Sites, Keeping Up.

Planning Your Work: Identifying Requirements, Defining the Work, Tracking the Work Continuous Improvement, Prioritization & Estimation, Managing Bugs, Continuous Delivery

User Experience: Information Architecture, Getting the User Experience Right, Polishing the User Experience, Implementing the User Experience.

UNIT II

Designing Systems: System Architectures, Identifying Concepts, Identifying User Interactions, Handling Commonalities, Working with Legacy and External Dependencies, Component Interactions, Applications vs. Modules, Cross-Functional Requirements, Caching, Designing for Failure, Designing Modules, Refactoring, Tools, Changing Your Architecture.

Ethics: Privacy, Cognitive Load, Energy Usage, Trust.

Front End: HTML, From Server to Browser, Styling, Components, Responsive Design, Progressive Enhancement to Progressively Enhance, or Not? Mobile First, Feature Detection, Progressive Enhancement of Style, When Not Using Progressive Enhancement, Search Engine Optimization, Build Tools.

UNIT III

Testing: Test-Driven Development, Test Pyramid, Behaviour-Driven Development, Three Amigos, Manual Testing, Visual Testing, Cross-Functional Testing,

JavaScript: Asynchronicity, JavaScript in the Browser, Offline-First Development, Document Object Model, Server-Side JavaScript, Table of Contents viii JavaScript Modules, Structuring Your JavaScript, JavaScript Types, Object-Oriented Programming, Functional Programming, Communicating Between Components, Connecting Components Together, Testing, Build Tools.

Accessibility: Accessible from the Start, Working with Assistive Technologies, Dealing with Interactive UI, Testing for Accessibility, Avoiding Common Mistakes.

UNIT IV

APIs:API Responsibilities, designing a REST API, Securing Your API, Event-Based APIs, Discovering APIs, Using APIs

Storing Data: Types of Databases, To SQL, or NoSQL?, Where to Store Your Data, Accessing Data from Your App, Managing Your Data, Protecting Your Data.

Security: Trust, Responding to Incidents, The Golden Rule, Threats, Security Checklists, Passwords, Indirect Attacks.

UNIT V

Deployment: Twelve Factor Apps, Developer Machines, Production Environments, Moving Code into Production, Configuring Your Box, Infrastructure, Immutable Infrastructure, Continuous Delivery & Continuous Deployment.

In Production: Fire Drills, Run Books, Monitoring, Responding to Incidents

Constant Learning: Collecting, Experiments, Analysing Results, Hypothesis-Driven.

Textbook:

1. Chris Northwood, The full Stack Developer, Apress, 2018.

Reference Books:

- 1. Modern Full-Stack Development: Using TypeScript, React, Node.js, Webpack, and Docker, Frank Zammetti.
- 2. Full Stack Web Development for Beginners, Riaz Ahmed.

Online Learning Resources:

1. Learn Full Stack Web Development with 40+ Projects and Exercises | Udemy

3 0 0 3

(20A05705c) INDUSTRIAL IOT (Open Elective-IV)

Course Objectives:

- Acquire theoretical knowledge on Industrial Internet of Things.
- Apply suitable machine learning techniques for data handling and to gain knowledge from it.
- Evaluate the performance of algorithms for sensors and data transmission.

Course Outcomes:

- Understand the characteristics of Internet of Things and its industry strategies.
- Apply various Internet of Things models to appropriate problems.
- Identify and integrate more than one technology to enhance the performance.
- Understand the sensors and data transmission used in Internet of Things.
- Analyse the co-occurrence of data to find interesting frequent patterns.
- Pre-process the data before applying to any real-world problem and can evaluate its performance.

UNIT I Overview of Internet of Things

Introduction, IOT Architecture, Application –based IOT protocols, Cloud Computing, Fog Computing, Sensor Cloud, Big Data.

Overview of Industry 4.0 and Industrial Internet of Things: IIoT- Prerequisites of IIOT, Basics of CPS, CPS and IIOT, Applications of IIoT.

UNIT II Industrial Internet of Things

Introduction, Industrial Internet Systems, Industrial sensing, Industrial sensing, Industrial Processes. Business Models and Reference Architecture of IIoT: Definition of a business model, Business models of IOT, Business models of IIOT.

UNIT III Key and On-site Technologies

Key Technologies:Off-site Technologies- Introduction, Cloud Computing- Necessity, Cloud Computing and IIot, Industrial Cloud Platform Providers, SLA, Requirements of Industry 4.0, Fog Computing.

On-site Technologies- Introduction, Augmented Reality- History, Categorization, Applications, Virtual Reality- History, Categorization, Applications.

UNIT IV Sensors and Data Transmission

Sensors: Introduction to Sensors, Characteristics-Sensor calibration, Sensor profile, Operating voltage, Sensor Categories. Actuators:Introduction, Thermal Actuators, Hydraulic Actuators, Pneumatic Actuators, Electromechanical Actuators.

Industrial Data Transmission: Foundation fieldbus, Profibus, HART, Interbus, Bitbus.

UNIT VMachine learning and Data science, applications in healthcare

Machine Learning and Data Science in Industries:Introduction, Machine Learning, Categorization on ML, Applications and Data Science of ML in industries, Deep Learning, Applications of Deep Learning in industries.

Applications of Healthcare in Industries:Smart Devices, Advanced Technologies using in Healthcare, Open Research Issues to be Addressed.

Textbooks:

1. S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.

Reference Books:

- 1. Industrial IoT. Available online: https://medium.com/iotforall/whatproduct-managers-need-to-know-about-industrial-iot-8c92eec1d9d2
- 2. IIoT Cloud Platforms. Available online: https://fr.farnell.com/willthere-be-a-dominant-iiot-cloud-platform.
- 3. Kajima, T. and Kawamura, Y., 1995. Development of a high-speed solenoid valve: Investigation of solenoids. IEEE Transactions on industrial electronics, 42(1), pp.1-8.

Online Learning Resources:

- 1. https://www.coursera.org/learn/industrial-internet-of-things
- 2. https://www.coursera.org/specializations/developing-industrial-iot

(20A27705) WASTE AND EFFLUENT MANAGEMENT (OPEN ELECTIVE-IV)

Course Objectives:

- To understand the wastewater treatment process.
- To gain knowledge on waste disposal in various ways.
- To know about advances in wastewater treatment.

Course Outcomes:

• Acquires knowledge on technologies used for chemical and biological methods of waste water and effluent treatment

UNIT I

Wastewater Treatment an Overview: Terminology – Regulations – Health and Environment Concerns in waste water management – Constituents in waste water inorganic – Organic and metallic constituents. Process Analysis and Selection: Components of waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Balance Analysis – Modeling of ideal and non ideal flow in Reactors – Process Selection

UNIT II

Waste disposal methods – Physical, Chemical & Biological; Economical aspects of waste treatment and disposal. Treatment methods of solid wastes: Biological composting, drying and incineration; Design of Solid Waste Management System: Landfill Digester, Vermicomposting Pit.

UNIT III

Introduction: Classification and characterization of food industrial wastes from Fruit and Vegetable processing industry, Beverage industry; Fish, Meat & Poultry industry, Sugar industry and Dairy industry.

Chemical Unit Processes: Role of unit processes in waste water treatment chemical coagulation – Chemical precipitation for improved plant performance chemical oxidation – Neutralization – Chemical Storage

UNIT IV

Biological Treatment: Overview of biological Treatment – Microbial metabolism – Bacterial growth and energetics – Aerobic biological oxidation – Anaerobic fermentation and oxidation – Trickling filters – Rotating biological contractors – Combined aerobic processes – Activated sludge film packing.

UNIT V

Advanced Wastewater Treatment: Technologies used in advanced treatment – Classification of technologies. Removal of Colloids and suspended particles – Depth Filtration – Surface Filtration – Membrane Filtration – Ion Exchange – Advanced oxidation process.

Textbooks:

- 1. Herzka A & Booth RG; "Food Industry Wastes: Disposal and Recovery"; Applied Science Pub Ltd. 1981,
- Fair GM, Geyer JC & Okun DA; "Water & Wastewater Engineering"; John Wiley & Sons, Inc. 1986,

References:

- 1. GE; "Symposium: Processing Agricultural & Municipal Wastes"; AVI. 1973,
- 2. Inglett Green JH & Kramer A; "Food Processing Waste Management"; AVI. 1979,
- 3. Rittmann BE & McCarty PL; "Environmental Biotechnology: Principles and Applications"; Mc-Grow-Hill International editions2001,.
- 4. Bhattacharyya B C & Banerjee R; "Environmental Biotechnology"; Oxford University Press.
- 5. Bartlett RE; "Wastewater Treatment; Applied Science" Pub Ltd.
- 6. G. Tchobanoglous, FI Biston, "Waste water Engineering Treatment and Reuse": Mc Graw Hill, 2002.
- "Industrial Waste Water Management Treatment and Disposal by Waste Water" 3rd Edition Mc Graw Hill 2008

3 0 0 3

(20A54703) NUMBER THEORY AND ITS APPLICATIONS (OPEN ELECTIVE-IV)

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

- Understand number theory and its properties. •
- Understand principles on congruences •
- Develop the knowledge to apply various applications
- Develop various encryption methods and its applications.

UNIT I Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT II Congruences

Introduction to congruences -Linear congruences-The Chinese remainder theorem-Systems of linear congruences

UNIT III Applications of Congruences

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem-Euler's p hi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT IVFinite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-fermat factorization and factor bases.

UNIT V Cryptology

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers-Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm-Some applications to computer science.

Textbooks:

- 1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
- 2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

- 1. An Introduction To The Theory Of Numbers, Herbert S. Zuckerman, Hugh L. Montgomery, Ivan Niven, wiley publishers
- 2. Introduction to Analytic number theory-Tom M Apostol, springer
- 3. Elementary number theory, VK Krishnan, Universities press

Online Learning Resources:

https://www.slideshare.net/ItishreeDash3/a-study-on-number-theory-and-its-applications

(20A56703) SMART MATERIALS AND DEVICES (OPEN ELECTIVE-IV)

Course Objectives:

- To provide exposure to smart materials and their engineering applications.
- To impart knowledge on the basics and phenomenon behind the working of smart materials
- To enlighten the properties exhibited by smart materials
- To educate various techniques used to synthesize and characterize smart materials
- To identify the required smart material for distinct applications/devices

Course Outcomes:

- to recognize the need of smart materials
- to understand the working principles of smart materials
- to know different techniques used to synthesize and characterize smart materials
- to exploit the properties of smart materials
- to make use of smart materials for different applications

UNIT I

Introduction: Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudo elasticity, One-way shape memory effect, Two-way shape memory effect.

UNIT II: Properties of Smart Materials: Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials

UNIT III: Synthesis of smart materials: Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloying and Thin film deposition techniques: Chemical etching, Sol-gel, spray pyrolysis.

UNIT IV: Characterization techniques: X-ray diffraction, Raman spectroscopy (RS), Fouriertransform infrared reflection (FTIR), UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy, Atomic force microscopy (AFM) and Differential Scanning Calorimetry (DSC).

UNIT V: Materials and Devices: Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials, Electro-rheological and Magneto-rheological materials and Composite materials.

Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of the smart materials.

Textbooks:

- 1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc.2002
- 2. Smart Materials and Structures M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

References:

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2ndEdn., John Wiley & Sons, 2003.
- 4. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic 1.Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, 2002.
- 5. Optical Metamaterials: Fundamentals and Applications -W. Cai and V. Shalaev, springer, 2010.
- 6. Smart Materials and Structures P. L Reece, New Research, Nova Science, 2007

NPTEL courses links

https://nptel.ac.in/courses/112/104/112104173/ https://nptel.ac.in/courses/112/104/112104251/ https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec

(20A51703) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT(OPEN ELECTIVE-IV)

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

Course Outcomes:

• Recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

UNIT I: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

UNIT II: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogenous catalysts, Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

UNIT III: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water-based coatings, Ionic liquids as catalyst and solvent

UNIT IV: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feed stocks: Chemicals from Renewable Feed stocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Bio refinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sono chemistry: Sono chemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

UNIT V: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Textbooks:

- 1. M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- 2. Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition, Oxford

University Press, USA

References:

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC Press, 2010.
- 2. Edited by AlvisePerosa and Maurizio Selva , Hand Book of Green chemistry Volume 8:Green Nanoscience, wiley-VCH, 2013.

JNTUA B.Tech. R20 Regulations

HONOURS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C

3 1 0 4

(20A01H01) SOIL DYNAMICS AND MACHINEFOUNDATION

Course Objectives:

- To make the student understand the fundamental definitions of vibrations like simple harmonic motion etc and vibration measurements.
- To make the student understand about the wave propagation and dynamic soil properties and laboratory testing, field testing techniques.
- To make the student analyze the vibrations using various methods and also effects footing shapes on vibratory response
- To make the student analyze and design of foundations for reciprocating engines and impact type machines
- To make the student analyze and design of piles under various types of vibration conditions such as vertical vibrations etc.

Course Outcomes:

- Understand the fundamental definitions of vibrations like simple harmonic motion, frequency dependent excitation etc.
- Understand about the wave propagation and dynamic soil properties and laboratory and field testing techniques.
- Analyze the vibrations using various methods and also effects footing shapes on vibratory response
- Design of the foundations for reciprocating engines and impact type machines
- Design of piles under various types of vibration conditions such as vertical vibrations, piles subjected to torsion etc.

UNIT I

Fundamentals of Vibration: Definitions, Simple harmonic motion, Response of SDOF systems of Free and Forced vibrations with and without viscous damping, Frequency dependent excitation, Systems under transient loads, Rayleigh's method of fundamental frequency, Logarithmic decrement, Determination of viscous damping, Transmissibility, Systems with Two and Multiple degrees of freedom, Vibration measuring instruments.

UNIT II

Wave Propagation and Dynamic Soil Properties: Propagation of seismic waves in soil deposits -Attenuation of stress waves, Stress-strain behaviour of cyclically loaded soils, Strength of cyclically loaded soils, Dynamic soil properties - Laboratory and field testing techniques, Elastic constants of soils, Correlations for shear modulus and damping ratio in sand, gravels, clays and lightly cemented sand. Liquefaction of soils: An introduction and evaluation using simple methods.

UNIT III

Vibration Analyses: Types, General Requirements, Permissible amplitude, Allowable soil pressure, Modes of vibration of a rigid foundation block, Methods of analysis, Lumped Mass models, elastic half space method, elasto-dynamics, effect of footing shape on vibratory response, dynamic response of embedded block foundation, Vibration isolation.

UNIT IV

Design of Machine Foundations: Analysis and design of block foundations for reciprocating engines, Dynamic analysis and design procedure for a hammer foundation, IS code of practice design procedure for foundations of reciprocating and impact type machines. Vibration isolation and absorption techniques.

UNIT V

Machine Foundations on Piles: Introduction, Analysis of piles under vertical vibrations, Analysis of piles under translation and rocking, Analysis of piles under torsion, Design procedure for a pile supported machine foundation.

Textbooks:

- 1. Soil Dynamics, by Prakash, S. McGraw Hill, 1981.
- 2. Vibrations of Soils and Foundations, byRichart, F. E. Hall J. R and Woods R. D. -Prentice Hall Inc., 1970.

Reference Books:

- 1. Dynamics of Structures and Foundation, by I.Chowdhary and S P Dasgupta 2009.
- 2. Design of Structures and Foundations for Vibrating Machines, by Arya, S. D, O'Neil, M. and Pincus, G.- Gulf Publishing Co., 1979.
- 3. Foundation for Machines: Analysis and Design, by Prakash, S. and Puri, V. K. John Wiley & Sons, 1998.
- 4. Vibration Analysis and Foundation Dynamics, by Kameswara Rao, N. S. V- Wheeler Publication Ltd., 1998.
- 5. Soil Dynamics and Machine Foundation, by Swami Saran Galgotia Publishing, 1999.
- 6. Geotechnical Earthquake Engineering, by Kramer S. L. Prentice Hall, 1996.

Online Learning Resources:

https://nptel.ac.in/courses/105101005 https://nptel.ac.in/courses/105107066

(20A01H02) ADVANCED STRUCTURAL DESIGN

Course Objectives:

- To teach concepts of concrete beams and slabs by following different codes by BS 8110 -Euro code – ACI - IS 456
- To Understand Estimation of Crack width In -Beams, Shrinkage and Thermal Cracking By IS 456 Of BS 8110
- To impart design procedure of Shear in Flat Slabs and Flat Plates
- To impart design Of Plain Concrete Walls and Shear Walls
- To demonstrate design of Designof Reinforced Concrete Members for Fire Resistance by ISO 834 Standard Heating Conditions

Course Outcomes:

- Understand the basic concepts of concrete beams and slabs by different codes
- To know the concepts of deep beams by British practice-ACI –IS 456
- Apply design concepts to Shear in Flat Slabs and Flat Plates
- Apply design concepts to Plain Concrete Walls and Shear Walls to Understand the basic concepts of fire resistance
- Apply design concepts for fire resistance of Reinforced Concrete Members

UNIT I

Deflection Of Reinforced Concrete Beams and Slabs: Introduction -Short-Term Deflection Of Beams And Slabs -Deflection Due To - Imposed Loads - Short- Term Deflection Of Beams Due To Applied Loads- Calculation Of Deflection By IS 456 - Calculation Of Deflection By BS 8110 - Deflection Calculation By Euro code – ACI Simplified Method - Deflection Of Continuous Beams By IS 456 -Deflection Of Cantilevers - Deflection Of Slabs

UNIT II

Estimation Of Crack Width In Reinforced Concrete Members And Design Of Deep Beams: Introduction - Factors Affecting Crack width In Beams - Mechanism Of Flexural Cracking Calculation Of Crack Widths - Simple Empirical Method - Estimation Of Crack width In -Beams By IS 456 Of BS 8110 - Shrinkage And Thermal Cracking. Deep Beams: Introduction - Minimum Thickness - Steps of Designing Deep Beams - Design By IS 456 - Design According To British Practice - ACI Procedure For Design Of Deep Beams - Checking For Local Failures - Detailing Of Deep Beams.

UNÎT III

Shear In Flat Slabs and Flat Plates: Introduction - Checking For One-Way (Wide Beam) Shear - Two-Way (Punching) Shear Permissible Punching Shear - Shear Due To Unbalanced Moment (Torsional Moments) Calculation Of J Values - Strengthening Of Column Areas For Moment Transfer By Torsion Which Produces Shear - Shear Reinforcement Design - Effect Of Openings In Flat Slabs - Recent Revisions In ACI 318 - Shear In Two – Way Slabs With Beams.

UNITIV

Design Of Plain Concrete Walls And Shear Walls: Introduction - Braced And Unbraced Walls -Slenderness Of Walls- Eccentricities Of Vertical Loads At Right Angles To Wall - Empirical Design Method For Plane Concrete Walls Carrying Axial Load - Design Of Walls For In-Plane Horizontal Forces - Rules For Detailing Of Steel In Concrete Walls Design Of Shear Walls: Introduction -Classification Of Shear Walls - Classification According To Behavior - Loads In Shear Walls -Design Of Rectangular And Flanged Shear Walls - Derivation Of Formula For Moment Of Resistance Of Rectangular Shear Walls

UNIT V

Design Of Reinforced Concrete Members For Fire Resistance : Introduction - ISO 834 Standard Heating Conditions- Grading Or Classification - Effect Of High Temperature On Steel And Concrete - Effect Of High Temperatures On Different Types Of Structural Members - Fire Resistance By Structural Detailing From Tabulated Data - Analytical Determination Of The Ultimate Bending

Moment Capacity Of Reinforced Concrete Beams Under Fire - Other Considerations

Textbooks:

- 1. Structural Design and Drawing: Reinforced Concrete and Steel, Fourth Edition, N Krishna Raju, Universities Press, 2022
- 2. Reinforced Concrete Structural Elements: Behaviour, Analysis and Design, by P.Purushothaman, Tata Mc graw Hill.

Reference Books:

- 1. Reinforced Concrete Desigers Hand Bood, by C.E. Reynolds And J.C. Steedman, A View Point Publication.
- 2. Limit State Design Of Reinforced Concrete Structures By P.Dayaratnam, Oxford &Ibh Publishers.
- 3. Advanced Rcc By N.Krishna Raju, Cbs Publishers & Distributors.
- 4. Reinforced Cement Concrete Structures Devdas Menon & Unnikrishna Pillai, Pearson Publishers

(20A01H03) REPAIR AND REHABILITATION OF TRUCTURES

Course Objectives:

- To learn various distress and damages to concrete and masonry structures
- To understand the importance of maintenance of structures
- To assess the damage to structures using various tests
- To study the various types and properties of repair materials
- To learn various repair techniques of damaged structures, corroded structures

Course Outcomes:

- Understand corrosion effects
- Understand the deterioration in structures
- Understand nondestructive tests
- Understand the surface repair of structures
- Understand the concepts of Strengthening and stabilization of structural elements

UNIT I

Introduction, significance of corrosion, and corrosion mechanisms - Embedded metal corrosion

UNIT II

Deterioration of cementations systems – Sulphate and Acid attack - Alkali Silica Reaction (ASR), Shrinkage, and others

UNIT III

Concrete assessment using non-destructive tests (NDT) - Concrete assessment and load effects

UNIT IV

Surface repair – Condition assessment – Analysis, strategy, and design – Material requirement, surface preparation, placement of repair material

UNIT V

Strengthening and stabilization -Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, leakage, earthquake-Transportation of Structures from one place to other - Structural Health Monitoring- demolition techniques-Engineered demolition methods-Case studies, Study of structural conditions of heritage buildings.

Textbooks:

- 1. Concrete Repair and Maintenance by Peter H. Emmons, R.S. Means Company, Kingston, MA, USA.
- 2. Maintenance Repair & Rehabilitation & Minor Works of Buildings by P.C. Varghese, PHI Learning Pvt. Ltd., New Delhi.

Reference Books:

- 1. Concrete Repair to EN1504 Diagnosis, Design, Principles and Practice by Michael Raupach and Till Buttner, CRC Press.,
- 2. Concrete Structures Protection, Repair and Rehabilitation by R. Dodge Woodson, Butterworth-Heinemann Elsevier, UK

Online Learning Resources:

https://nptel.ac.in/courses/105106202

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CE) L T P C

3 0 0 3

(20A01H04) CONSTRUCTION ECONOMICS AND FINANCE

Course Objectives:

- The market structures and integration concepts
- To study the role & methods of economics & finance concepts applied to construction business.
- Acquire knowledge of economics to facilitate the process of economic decision making
- Acquire knowledge on basic financial management aspects
- Develop the skills to analyze financial statements

Course Outcomes:

- Evaluate the economic theories, cost concepts and pricing policies
- Apply Systematic evaluation of cost and benefit associated with different projects.
- Apply the concepts of financial management for project appraisal
- Understand accounting systems and analyze financial statements
- Understand the impact of economic investment and project-management techniques

UNIT I

Economics- Role of Civil Engineering in Industrial Development-Advances in Civil Engineering and engineering economics- Support matters of Economy as related top Engineering-Market demand and supply-Choice of technology- Quality control and Quality Production-Audit in economic law of returns governing production

UNIT II

Construction of economics- Construction development in housing, Transport and other infrastructures-Economics of Ecology, environment, energy resources-Local material selection - Form and Functional Designs-Construction workers- Urban problems - Poverty-Migration-Unemployment-pollution.

UNIT III

Basics of accounting -cash basis of accounting- accrual basis of accounting. Final accounts- trading, profit and loss account-balance sheet. Analysis of financial statement - ratio analysis- Dupont chart - trend analysis-common size statement- cash flow analysis. Completed contract method -percentage completion method.

UNIT IV

Long term sources of financing-Equity -debenture- long term loan - preference share --venture capital - leasing. Short term sources of fund -- money market instruments - certificate of deposit - cash credit - repurchase agreement - treasury bill - commercial paper.

UNIT V

Important decision of finance - investment decision -capital budget technique - procurement decision - dividend policy decision. Cost of capital.

Textbooks:

- 1. Projects Planning Analysis Selection Implementation & Review by Prasanna Chandra, Tata McGrawHill Publishing Co., Ltd, New Delhi.
- 2. Fundamental of Construction Management and Organization by Kwaku A., Tenah and Jose M .Guevera, Prentice Hall of India

Reference Books:

- 1. Financial and cost concepts for construction Management by Halpin, D.W., John Wiley & Sons, New York,
- 2. Introduction to Financial Management by Madura J. and Veit, E.T., West PublishingCo.
- 3. Construction Economics: An Introduction (Building & Surveying Series), by Stephen L. Gruneberg Palgrave Macmillan.

Online Learning Resources: <u>https://nptel.ac.in/courses/105103023</u>